|
|
Publications in Math-Net.Ru
-
Methodology for identifying parameters for a system of differential equations of a mathematical model of creep
Mathematical notes of NEFU, 32:1 (2025), 96–97
-
Mathematical model of creep and creep rupture strength for hydrogen-charged VT6 titanium alloy at a temperature of 600 $^\circ$C
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025), 750–762
-
Prediction of creep and long-term strength for hydrogen-charged VT6 Titanium alloy using a leader specimen
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025), 579–590
-
Numerical method for structural and parametric identification of a mathematical model of incomplete inverse deformation of creep strain
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:1 (2024), 73–95
-
Prediction of creep and long-term strength of material using a leader sample under ductile fracture conditions
Prikl. Mekh. Tekh. Fiz., 64:6 (2023), 199–209
-
Predicting high-temperature rheological deformation and long-term strength of a viscoplastic material using a leader sample
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:2 (2023), 292–308
-
Prediction of individual deformation characteristics of structural elements by a “leader” product
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022), 500–519
© , 2026