RUS  ENG
Full version
PEOPLE

Shlyk Vladimir Alekseevich

Publications in Math-Net.Ru

  1. Removable sets for the Newtonian spaces $N^{1,p}$

    Algebra i Analiz, 37:3 (2025),  90–137
  2. On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022),  138–145
  3. Capacities of generalized condensers with $A_1$-Muckenhoupt weight

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  164–186
  4. Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  136–159
  5. Weighted Sobolev spaces, capacities and exceptional sets

    Sib. Èlektron. Mat. Izv., 17 (2020),  1552–1570
  6. Generalized condensers and vector measures

    Sib. Èlektron. Mat. Izv., 16 (2019),  683–691
  7. Criteria of removable sets for harmonic functions in the Sobolev spaces $\mathbf{L^1_{p,w}}$

    Mathematical Physics and Computer Simulation, 22:2 (2019),  51–64
  8. On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates

    Mat. Zametki, 103:6 (2018),  841–852
  9. Weighted modules and capacities on a Riemann surface

    Zap. Nauchn. Sem. POMI, 458 (2017),  164–217
  10. Modules of families of vector measures on a Riemann surface

    Zap. Nauchn. Sem. POMI, 458 (2017),  31–41
  11. Modules of space configuration and removable sets

    Zap. Nauchn. Sem. POMI, 449 (2016),  275–288
  12. Ñondensers and equivalent open sets on a Riemann surface

    Zap. Nauchn. Sem. POMI, 449 (2016),  235–260
  13. A configuration module and removable sets

    Zap. Nauchn. Sem. POMI, 440 (2015),  36–42
  14. On the weighted equivalence of open sets in $R^n$

    Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 4(23),  47–52
  15. În the problem of decomposition and composition of normal rings

    Zap. Nauchn. Sem. POMI, 429 (2014),  202–209
  16. Piecewise linear approximation and polyhedral surfaces

    Zap. Nauchn. Sem. POMI, 418 (2013),  172–183
  17. The spherical symmetrization and NED-sets on a hyperplane

    Zap. Nauchn. Sem. POMI, 404 (2012),  248–258
  18. Generalized capacities, compound curves and removable sets

    Zap. Nauchn. Sem. POMI, 404 (2012),  100–119
  19. Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets

    Mat. Zametki, 90:2 (2011),  216–230
  20. Removable sets for the generalized module of surface's family

    Zap. Nauchn. Sem. POMI, 392 (2011),  163–190
  21. Some properties of the capacity and module of a polycondenser and removable sets

    Zap. Nauchn. Sem. POMI, 392 (2011),  84–94
  22. Sufficiency of broken lines in the modulus method and removable sets

    Sibirsk. Mat. Zh., 51:6 (2010),  1298–1315
  23. Generalized capacities and polyhedral surfaces

    Zap. Nauchn. Sem. POMI, 383 (2010),  148–178
  24. Null-sets for the extremal lengths

    Zap. Nauchn. Sem. POMI, 383 (2010),  86–96
  25. Capacity of polycondensor and the module of the family of vector measure

    Zap. Nauchn. Sem. POMI, 371 (2009),  56–68
  26. Selected problems of geometrical theory of functions and potential theory

    Dal'nevost. Mat. Zh., 8:1 (2008),  46–95
  27. Geometric criteria for removable sets

    Zap. Nauchn. Sem. POMI, 357 (2008),  75–89
  28. On the invariance of compacts generating normal ring open sets under quasiisometries

    Zap. Nauchn. Sem. POMI, 357 (2008),  46–53
  29. Metric characteristics of normal in Grotzsch's sense ring's domains with radial slits in space

    Zap. Nauchn. Sem. POMI, 350 (2007),  17–25
  30. On canonical mappings onto circular domains with radial slits

    Zap. Nauchn. Sem. POMI, 337 (2006),  35–50
  31. The continuously removable sets for quasiconformal mappings

    Zap. Nauchn. Sem. POMI, 314 (2004),  213–220
  32. Criteria of the removable sets for the weighted spaces of garmonic functions

    Zap. Nauchn. Sem. POMI, 286 (2002),  62–73
  33. Null-sets criteria for weighed Sobolev spaces

    Zap. Nauchn. Sem. POMI, 276 (2001),  52–82
  34. On uniqueness of the extremal function for $p$-capacity of a condenser

    Zap. Nauchn. Sem. POMI, 226 (1996),  228–234
  35. Weighted capacities, moduli of condensers and Fuglede exceptional sets

    Dokl. Akad. Nauk, 332:4 (1993),  428–431
  36. Normal domains and removable singularities

    Izv. RAN. Ser. Mat., 57:4 (1993),  92–117
  37. The equality between $p$-capacity and $p$-modulus

    Sibirsk. Mat. Zh., 34:6 (1993),  216–221
  38. The metrical characteristics of $N_p$-compacts and removed singularities for $L_p^{(1)}$-space, $p\in(1,\infty)$

    Zap. Nauchn. Sem. LOMI, 196 (1991),  162–171
  39. The condition of $\varepsilon$-clasping for $N$-compacts

    Zap. Nauchn. Sem. LOMI, 196 (1991),  154–161
  40. Geometry of removable sets for the space $\mathrm{FD}^p$, $p\in(1,+\infty),$ and normal regions in the sense of Hedberg

    Dokl. Akad. Nauk SSSR, 312:3 (1990),  546–549
  41. The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$

    Mat. Sb., 181:11 (1990),  1558–1572
  42. $NC_p$-sets of finite area

    Sibirsk. Mat. Zh., 31:5 (1990),  194–196
  43. $K$-capacity and the Rado problem for mappings with bounded distortion

    Sibirsk. Mat. Zh., 31:1 (1990),  179–186
  44. The capacity of condenser and the module of the family of separating surfaces

    Zap. Nauchn. Sem. LOMI, 185 (1990),  168–182
  45. $C_p$-capacity and normal domains

    Dokl. Akad. Nauk SSSR, 307:2 (1989),  297–299
  46. $K$-capacity and some of its applications in the theory of mappings with bounded distortion

    Dokl. Akad. Nauk SSSR, 306:6 (1989),  1308–1310
  47. The method of conjugate families in the theory of moduli

    Dokl. Akad. Nauk SSSR, 306:2 (1989),  297–300
  48. Normal domains in the Grötzsch sense and topologically removable sets for space homeomorphisms

    Dokl. Akad. Nauk SSSR, 302:3 (1988),  553–555
  49. On the theory of normal domains

    Zap. Nauchn. Sem. LOMI, 168 (1988),  180–186
  50. Generalized quadrangles, symmetrization and nonunivalent mappings

    Zap. Nauchn. Sem. LOMI, 154 (1986),  163–174
  51. A uniqueness theorem for the symmetrization of arbitrary capacitors

    Sibirsk. Mat. Zh., 23:2 (1982),  165–175
  52. Some estimates in an annulus for weakly univalent functions that omit values on a circle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8,  85–86
  53. Theory of nonunivalent mappings of multiply connected domains

    Zap. Nauchn. Sem. LOMI, 112 (1981),  184–197
  54. Distortion theorems for a family of weakly univalent functions in the disk

    Mat. Zametki, 27:6 (1980),  927–933

  55. Erratum: “The method of conjugate families in the theory of moduli”

    Dokl. Akad. Nauk SSSR, 309:1 (1989),  10


© Steklov Math. Inst. of RAS, 2026