|
|
Publications in Math-Net.Ru
-
Removable sets for the Newtonian spaces $N^{1,p}$
Algebra i Analiz, 37:3 (2025), 90–137
-
On one Dubinin problem for the weight capacitance of a Hesse condenser with $A_1$-Mackenhaupt weight
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022), 138–145
-
Capacities of generalized condensers with $A_1$-Muckenhoupt weight
Sib. Èlektron. Mat. Izv., 19:1 (2022), 164–186
-
Removable sets for Sobolev spaces with Muckenhoupt $A_1$-weight
Sib. Èlektron. Mat. Izv., 18:1 (2021), 136–159
-
Weighted Sobolev spaces, capacities and exceptional sets
Sib. Èlektron. Mat. Izv., 17 (2020), 1552–1570
-
Generalized condensers and vector measures
Sib. Èlektron. Mat. Izv., 16 (2019), 683–691
-
Criteria of removable sets for harmonic functions in the Sobolev spaces $\mathbf{L^1_{p,w}}$
Mathematical Physics and Computer Simulation, 22:2 (2019), 51–64
-
On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
Mat. Zametki, 103:6 (2018), 841–852
-
Weighted modules and capacities on a Riemann surface
Zap. Nauchn. Sem. POMI, 458 (2017), 164–217
-
Modules of families of vector measures on a Riemann surface
Zap. Nauchn. Sem. POMI, 458 (2017), 31–41
-
Modules of space configuration and removable sets
Zap. Nauchn. Sem. POMI, 449 (2016), 275–288
-
Ñondensers and equivalent open sets on a Riemann surface
Zap. Nauchn. Sem. POMI, 449 (2016), 235–260
-
A configuration module and removable sets
Zap. Nauchn. Sem. POMI, 440 (2015), 36–42
-
On the weighted equivalence of open sets in $R^n$
Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 4(23), 47–52
-
În the problem of decomposition and composition of normal rings
Zap. Nauchn. Sem. POMI, 429 (2014), 202–209
-
Piecewise linear approximation and polyhedral surfaces
Zap. Nauchn. Sem. POMI, 418 (2013), 172–183
-
The spherical symmetrization and NED-sets on a hyperplane
Zap. Nauchn. Sem. POMI, 404 (2012), 248–258
-
Generalized capacities, compound curves and removable sets
Zap. Nauchn. Sem. POMI, 404 (2012), 100–119
-
Sufficiency of Polyhedral Surfaces in the Modulus Method and Removable Sets
Mat. Zametki, 90:2 (2011), 216–230
-
Removable sets for the generalized module of surface's family
Zap. Nauchn. Sem. POMI, 392 (2011), 163–190
-
Some properties of the capacity and module of a polycondenser and removable sets
Zap. Nauchn. Sem. POMI, 392 (2011), 84–94
-
Sufficiency of broken lines in the modulus method and removable sets
Sibirsk. Mat. Zh., 51:6 (2010), 1298–1315
-
Generalized capacities and polyhedral surfaces
Zap. Nauchn. Sem. POMI, 383 (2010), 148–178
-
Null-sets for the extremal lengths
Zap. Nauchn. Sem. POMI, 383 (2010), 86–96
-
Capacity of polycondensor and the module of the family of vector measure
Zap. Nauchn. Sem. POMI, 371 (2009), 56–68
-
Selected problems of geometrical theory of functions and potential theory
Dal'nevost. Mat. Zh., 8:1 (2008), 46–95
-
Geometric criteria for removable sets
Zap. Nauchn. Sem. POMI, 357 (2008), 75–89
-
On the invariance of compacts generating normal ring open sets under quasiisometries
Zap. Nauchn. Sem. POMI, 357 (2008), 46–53
-
Metric characteristics of normal in Grotzsch's sense ring's domains with radial slits in space
Zap. Nauchn. Sem. POMI, 350 (2007), 17–25
-
On canonical mappings onto circular domains with radial slits
Zap. Nauchn. Sem. POMI, 337 (2006), 35–50
-
The continuously removable sets for quasiconformal mappings
Zap. Nauchn. Sem. POMI, 314 (2004), 213–220
-
Criteria of the removable sets for the weighted spaces of garmonic functions
Zap. Nauchn. Sem. POMI, 286 (2002), 62–73
-
Null-sets criteria for weighed Sobolev spaces
Zap. Nauchn. Sem. POMI, 276 (2001), 52–82
-
On uniqueness of the extremal function for $p$-capacity of a condenser
Zap. Nauchn. Sem. POMI, 226 (1996), 228–234
-
Weighted capacities, moduli of condensers and Fuglede exceptional
sets
Dokl. Akad. Nauk, 332:4 (1993), 428–431
-
Normal domains and removable singularities
Izv. RAN. Ser. Mat., 57:4 (1993), 92–117
-
The equality between $p$-capacity and $p$-modulus
Sibirsk. Mat. Zh., 34:6 (1993), 216–221
-
The metrical characteristics of $N_p$-compacts and removed singularities for $L_p^{(1)}$-space, $p\in(1,\infty)$
Zap. Nauchn. Sem. LOMI, 196 (1991), 162–171
-
The condition of $\varepsilon$-clasping for $N$-compacts
Zap. Nauchn. Sem. LOMI, 196 (1991), 154–161
-
Geometry of removable sets for the space $\mathrm{FD}^p$, $p\in(1,+\infty),$ and normal regions in the sense of Hedberg
Dokl. Akad. Nauk SSSR, 312:3 (1990), 546–549
-
The structure of compact sets generating normal domains and removable singularities for the space $L_p^1(D)$
Mat. Sb., 181:11 (1990), 1558–1572
-
$NC_p$-sets of finite area
Sibirsk. Mat. Zh., 31:5 (1990), 194–196
-
$K$-capacity and the Rado problem for mappings with bounded distortion
Sibirsk. Mat. Zh., 31:1 (1990), 179–186
-
The capacity of condenser and the module of the family of separating surfaces
Zap. Nauchn. Sem. LOMI, 185 (1990), 168–182
-
$C_p$-capacity and normal domains
Dokl. Akad. Nauk SSSR, 307:2 (1989), 297–299
-
$K$-capacity and some of its applications in the theory of
mappings with bounded distortion
Dokl. Akad. Nauk SSSR, 306:6 (1989), 1308–1310
-
The method of conjugate families in the theory of moduli
Dokl. Akad. Nauk SSSR, 306:2 (1989), 297–300
-
Normal domains in the Grötzsch sense and topologically removable sets for space homeomorphisms
Dokl. Akad. Nauk SSSR, 302:3 (1988), 553–555
-
On the theory of normal domains
Zap. Nauchn. Sem. LOMI, 168 (1988), 180–186
-
Generalized quadrangles, symmetrization and nonunivalent mappings
Zap. Nauchn. Sem. LOMI, 154 (1986), 163–174
-
A uniqueness theorem for the symmetrization of arbitrary capacitors
Sibirsk. Mat. Zh., 23:2 (1982), 165–175
-
Some estimates in an annulus for weakly univalent functions that omit values on a circle
Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8, 85–86
-
Theory of nonunivalent mappings of multiply connected domains
Zap. Nauchn. Sem. LOMI, 112 (1981), 184–197
-
Distortion theorems for a family of weakly univalent functions in the disk
Mat. Zametki, 27:6 (1980), 927–933
-
Erratum: “The method of conjugate families in the theory of
moduli”
Dokl. Akad. Nauk SSSR, 309:1 (1989), 10
© , 2026