RUS  ENG
Full version
PEOPLE

Slavyanov Sergei Yur'evich

Publications in Math-Net.Ru

  1. Antiquantization of the Double Confluent Heun Equation. The Teukolsky Equation

    Rus. J. Nonlin. Dyn., 15:1 (2019),  79–85
  2. Bell polynomials in the Mathematica system and asymptotic solutions of integral equations

    TMF, 201:3 (2019),  446–456
  3. Systems of first order ODE generating confluent Heun equations

    Zap. Nauchn. Sem. POMI, 485 (2019),  187–194
  4. Links from second-order Fuchsian equations to first-order linear systems

    Zap. Nauchn. Sem. POMI, 468 (2018),  221–227
  5. Symmetries and apparent singularities for the simplest Fuchsian equations

    TMF, 193:3 (2017),  401–408
  6. Confluent Heun equation and confluent hypergeometric equation

    Zap. Nauchn. Sem. POMI, 462 (2017),  93–102
  7. Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients

    TMF, 189:3 (2016),  371–379
  8. Multifactorial global search algorithm in the problem of optimizing a reactive force field

    TMF, 187:1 (2016),  177–194
  9. Antiquantization of deformed Heun-class equations

    TMF, 186:1 (2016),  142–151
  10. Symbolic generation of Painlevé equations

    Zap. Nauchn. Sem. POMI, 448 (2016),  263–269
  11. Antiquantization and the corresponding symmetries

    TMF, 185:1 (2015),  186–191
  12. Polynomial degree reduction of a Fuchsian $2{\times}2$ system

    TMF, 182:2 (2015),  223–230
  13. Representations and use of symbolic computations in the theory of Heun equations

    Zap. Nauchn. Sem. POMI, 432 (2015),  162–176
  14. Euler integral symmetries for the confluent Heun equation and symmetries of the Painlevé equation PV

    TMF, 179:2 (2014),  189–195
  15. Integrable dynamical systems generated by quantum models with an adiabatic parameter

    TMF, 166:2 (2011),  261–265
  16. Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation

    TMF, 155:2 (2008),  252–264
  17. Isomonodromic deformations and "antiquantization" for the simplest ordinary differential equations

    TMF, 150:1 (2007),  143–151
  18. On computation of the effective thermal conductivity of building bricks with hollow spaces

    Mat. Model., 17:9 (2005),  77–84
  19. Equation for a Product of Solutions of Two Different Schrödinger Equations

    TMF, 136:3 (2003),  410–417
  20. Integral equations of Fredholm type with rapidly varying kernels and their relationship to dynamic systems

    Zap. Nauchn. Sem. POMI, 300 (2003),  245–249
  21. Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation

    TMF, 131:1 (2002),  15–25
  22. Isomonodromic deformations of Heun and Painlevé equations

    TMF, 123:3 (2000),  395–406
  23. Recurrent calculations of multipole matrix elements

    TMF, 120:3 (1999),  473–481
  24. Structural theory of special functions

    TMF, 119:1 (1999),  3–19
  25. Knowledge base on special functions

    Zap. Nauchn. Sem. POMI, 258 (1999),  345–354
  26. Eigenvalue problems for equations of the Heun class

    Algebra i Analiz, 8:2 (1996),  129–141
  27. Integral relations for special functions of hypergeometric and Heun class

    TMF, 107:3 (1996),  388–396
  28. Confluence of Fuchsian second-order differential equations

    TMF, 104:2 (1995),  233–247
  29. Quasiclassical asymptotics of the spectrum for lower states of an anharmonic oscillator

    Algebra i Analiz, 3:2 (1991),  132–138
  30. On the question of the Stokes phenomenon for the equation $y''(z)-z^my(z)=0$

    Dokl. Akad. Nauk SSSR, 285:3 (1985),  601–604
  31. Quasy-Optical Modes of the Jumping Ball Type Inside the Oblate Spheroid

    Zap. Nauchn. Sem. LOMI, 42 (1974),  239–243
  32. Asymptotic behavior of singular Sturm–Liouville problems for large parameter in the case of nearby transition points

    Differ. Uravn., 5:2 (1969),  313–325
  33. Asymptotic representations for prolate spheroidal functions

    Zh. Vychisl. Mat. Mat. Fiz., 7:5 (1967),  1001–1010

  34. Remembering V. F. Lazutkin

    Zap. Nauchn. Sem. POMI, 300 (2003),  23–24
  35. Method of Local Peak Functions for Reconstructing the Original Profile in the Fourier Transformation [Erratum]

    TMF, 131:2 (2002),  352


© Steklov Math. Inst. of RAS, 2026