RUS  ENG
Full version
PEOPLE

Mit'kin Dmitrii Alekseevich

Publications in Math-Net.Ru

  1. Estimates of certain arithmetic sums related to the number of divisors

    Mat. Zametki, 80:3 (2006),  471–472
  2. Уточнение оценки для суммы символов Лежандра от многочленов нечетной степени

    Chebyshevskii Sb., 6:3 (2005),  123–126
  3. О рациональных треугольниках и равногранных рациональных тетраэдрах

    Chebyshevskii Sb., 6:3 (2005),  113–122
  4. О величине площади рациональных треугольников

    Chebyshevskii Sb., 6:3 (2005),  105–112
  5. On a lower bound for the number of variables for the solvability of the Hilbert–Kamke system in 3-adic integers

    Trudy Mat. Inst. Steklova, 218 (1997),  266–286
  6. On an estimation of the number of solutions of certain ‘chipped’ systems of equations

    Mat. Zametki, 57:5 (1995),  681–687
  7. The number of terms in the Hilbert–Kamke problem in prime numbers

    Diskr. Mat., 4:4 (1992),  149–158
  8. Stepanov method of the estimation of the number of roots of some equations

    Mat. Zametki, 51:6 (1992),  52–58
  9. Waring's problem with various polynomials

    Mat. Zametki, 45:4 (1989),  95–104
  10. On the Hilbert–Kamke problem in prime numbers

    Uspekhi Mat. Nauk, 42:5(257) (1987),  205–206
  11. An estimate for the number of terms in the Hilbert–Kamke problem. II

    Mat. Sb. (N.S.), 132(174):3 (1987),  345–351
  12. An estimate of the number of terms in Waring's problem for polynomials of general form

    Izv. Akad. Nauk SSSR Ser. Mat., 50:5 (1986),  1015–1053
  13. An elementary proof of A. Weil's estimate for rational trigonometric sums with a prime denominator

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 6,  14–17
  14. An estimate for the number of terms in the Hilbert–Kamke problem

    Mat. Sb. (N.S.), 129(171):4 (1986),  549–577
  15. Polynomials with minimal set of values and the equation $f(x)=f(y)$ in a finite prime field

    Mat. Zametki, 38:1 (1985),  3–14
  16. On estimates and asymptotic formulas for rational trigonometric sums that are almost complete

    Mat. Sb. (N.S.), 122(164):4(12) (1983),  527–545
  17. Magnitude of sums of the characters of polynomials

    Mat. Zametki, 31:6 (1982),  827–835
  18. On estimates for rational trigonometric sums of a special form

    Dokl. Akad. Nauk SSSR, 224:4 (1975),  760–763
  19. Lower bounds of sums of Legendre symbols and lower bounds of trigonometric sums

    Uspekhi Mat. Nauk, 30:5(185) (1975),  214
  20. Estimate of a sum of Legendre symbols of polynomials of even degree

    Mat. Zametki, 14:1 (1973),  73–81


© Steklov Math. Inst. of RAS, 2026