RUS  ENG
Full version
PEOPLE

Leites Dmitrii Aleksandrovich

Publications in Math-Net.Ru

  1. Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov)

    SIGMA, 19 (2023), 032, 73 pp.
  2. Deformations of Symmetric Simple Modular Lie (Super)Algebras

    SIGMA, 19 (2023), 031, 66 pp.
  3. Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations

    SIGMA, 16 (2020), 089, 101 pp.
  4. Two problems in the theory of differential equations

    TMF, 198:2 (2019),  309–325
  5. Restricted Lie (Super)Algebras in Characteristic 3

    Funktsional. Anal. i Prilozhen., 52:1 (2018),  61–64
  6. Minkowski superspaces and superstrings as almost real–complex supermanifolds

    TMF, 173:3 (2012),  416–440
  7. Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix

    SIGMA, 5 (2009), 060, 63 pp.
  8. New Simple Modular Lie Superalgebras as Generalized Prolongs

    Funktsional. Anal. i Prilozhen., 42:3 (2008),  1–9
  9. Shapovalov determinant for loop superalgebras

    TMF, 156:3 (2008),  378–397
  10. Nonholonomic Riemann and Weyl tensors for flag manifolds

    TMF, 153:2 (2007),  186–219
  11. Simple Lie superalgebras and nonintegrable distributions in characteristic $p$

    Zap. Nauchn. Sem. POMI, 331 (2006),  15–29
  12. On computer-aided solving differential equations and stability study of markets

    Zap. Nauchn. Sem. POMI, 312 (2004),  165–187
  13. How to Quantize the Antibracket

    TMF, 126:3 (2001),  339–369
  14. Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I

    TMF, 124:2 (2000),  227–238
  15. Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices

    TMF, 123:2 (2000),  205–236
  16. Lie superalgebras

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 25 (1984),  3–49
  17. Clifford algebras as superalgebras and quantization

    TMF, 58:2 (1984),  229–232
  18. Solutions of the classical Yang–Baxter equation for simple superalgebras

    TMF, 58:1 (1984),  26–37
  19. Integrable systems and Lie superalgebras

    Zap. Nauchn. Sem. LOMI, 123 (1983),  92–97
  20. Irreducible representations of Lie superalgebras of vector fields and invariant differential operators

    Funktsional. Anal. i Prilozhen., 16:1 (1982),  76–77
  21. Representations of Lie superalgebras

    TMF, 52:2 (1982),  225–228
  22. Formulas for the characters of irreducible finite-dimensional representations of simple Lie superalgebras

    Funktsional. Anal. i Prilozhen., 14:2 (1980),  35–38
  23. Introduction to the theory of supermanifolds

    Uspekhi Mat. Nauk, 35:1(211) (1980),  3–57
  24. New Lie superalgebras and mechanics

    Dokl. Akad. Nauk SSSR, 236:4 (1977),  804–807
  25. State density of self-adjoint elliptic operators with stochastic coefficients

    Funktsional. Anal. i Prilozhen., 11:3 (1977),  70–71
  26. Integral forms and the Stokes formula on supermanifolds

    Funktsional. Anal. i Prilozhen., 11:1 (1977),  55–56
  27. Supermanifolds

    Dokl. Akad. Nauk SSSR, 224:3 (1975),  505–508
  28. Cohomologies of Lie superalgebras

    Funktsional. Anal. i Prilozhen., 9:4 (1975),  75–76
  29. A certain analogue of the determinant

    Uspekhi Mat. Nauk, 30:3(183) (1975),  156
  30. Spectra of graded-commutative rings

    Uspekhi Mat. Nauk, 29:3(177) (1974),  209–210

  31. Arkadii L'vovich Onishchik (obituary)

    Uspekhi Mat. Nauk, 75:4(454) (2020),  195–206
  32. Arkadii L'vovich Onishchik (on his 70th birthday)

    Uspekhi Mat. Nauk, 58:6(354) (2003),  193–200
  33. Feliks Aleksandrovich Berezin (obituary)

    Uspekhi Mat. Nauk, 36:4(220) (1981),  185–190


© Steklov Math. Inst. of RAS, 2026