RUS  ENG
Full version
PEOPLE

Timofeev Eugeniy Aleksandrovich

Publications in Math-Net.Ru

  1. On a segment partition for entropy estimation

    Model. Anal. Inform. Sist., 27:1 (2020),  40–47
  2. Existence of an unbiased consistent entropy estimator for the special Bernoulli measure

    Model. Anal. Inform. Sist., 26:2 (2019),  267–278
  3. Existence of an unbiased entropy estimator for the special Bernoulli measure

    Model. Anal. Inform. Sist., 24:5 (2017),  521–536
  4. The expansion of self-similar functions in the Faber–Schauder system

    Model. Anal. Inform. Sist., 24:4 (2017),  508–515
  5. Polylogarithms and the asymptotic formula for the moments of Lebesgue’s singular function

    Model. Anal. Inform. Sist., 23:5 (2016),  595–602
  6. Asymptotic formula for the moments of Bernoulli convolutions

    Model. Anal. Inform. Sist., 23:2 (2016),  185–194
  7. Asymptotic formula for the moments of Takagi function

    Model. Anal. Inform. Sist., 23:1 (2016),  5–11
  8. Asymptotic formula for the moments of Lebesgue’s singular function

    Model. Anal. Inform. Sist., 22:5 (2015),  723–730
  9. Selection of a metric for the nearest neighbor entropy estimators

    Fundam. Prikl. Mat., 18:2 (2013),  209–227
  10. Algorithm for Efficient Entropy Estimation

    Model. Anal. Inform. Sist., 20:2 (2013),  178–185
  11. Unbiased Entropy Estimator for Binary Sequences

    Model. Anal. Inform. Sist., 20:1 (2013),  107–115
  12. Balls in sequence spaces

    Model. Anal. Inform. Sist., 19:2 (2012),  109–114
  13. Bias of the nonpametric entropy estimator for Markov measures

    Zap. Nauchn. Sem. POMI, 384 (2010),  267–290
  14. On asymptotics of the entropy estimator bias for Bernoulli measures

    Model. Anal. Inform. Sist., 16:4 (2009),  96–108
  15. On asymptotics of the entropy estimator variance for symmetric Bernoulli measures

    Model. Anal. Inform. Sist., 16:3 (2009),  85–95
  16. Invariants of measures admiting statistical estimates

    Algebra i Analiz, 17:3 (2005),  204–236
  17. A Consistent Estimator of the Entropy of Measures and Dynamical Systems

    Mat. Zametki, 77:6 (2005),  903–916
  18. Statistical Estimation of Generalized Dimensions

    Mat. Zametki, 71:5 (2002),  697–712
  19. A consistent estimate for the dimension of manifolds and self-similar fractals

    Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1721–1729
  20. Modeling of a Neuron which Transmits Information by the Density of the Impulse Flow

    Avtomat. i Telemekh., 1997, no. 3,  190–199
  21. Optimal Task Scheduling between Parallel Servers

    Avtomat. i Telemekh., 1997, no. 2,  130–139
  22. Optimization of mean queue lengths in a queueing system with branching flows of secondary demands

    Avtomat. i Telemekh., 1995, no. 3,  60–67
  23. A probabilistic shared queueing discipline and the polyhedron of mean expectation times in the system $GI/G_n/1$

    Avtomat. i Telemekh., 1991, no. 10,  121–125
  24. Optimal choice of mean waiting times in the system $GI|M_n|1$

    Avtomat. i Telemekh., 1991, no. 6,  77–83
  25. Optimizing functions of queue in time in $GI_n/M/1$ queueing systems

    Avtomat. i Telemekh., 1989, no. 11,  100–109
  26. Calculation of the Expected Value of the Length of a Random Minimal Tree

    Teor. Veroyatnost. i Primenen., 33:2 (1988),  383–387
  27. Queueing systems with probabilistic priorities

    Avtomat. i Telemekh., 1985, no. 9,  159–162
  28. Random minimal trees

    Teor. Veroyatnost. i Primenen., 29:1 (1984),  134–141
  29. On the construction of an edgewise $m$-connected skeletal subgraph with minimum length of a maximal edge

    Dokl. Akad. Nauk SSSR, 233:6 (1977),  1053–1055
  30. Centers and radii of graphs

    Uspekhi Mat. Nauk, 32:6(198) (1977),  226


© Steklov Math. Inst. of RAS, 2026