RUS  ENG
Full version
PEOPLE

Pakuliak Stanislav Zdislavovich

Publications in Math-Net.Ru

  1. Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models

    SIGMA, 21 (2025), 078, 28 pp.
  2. Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models

    TMF, 206:1 (2021),  23–46
  3. Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors

    J. Stat. Mech., 2020, 93104, 31 pp.
  4. Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types

    SIGMA, 16 (2020), 120, 23 pp.
  5. New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors

    J. Stat. Mech., 2019 (2019), 44001, 24 pp.
  6. Bethe vectors for orthogonal integrable models

    TMF, 201:2 (2019),  153–174
  7. Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 926 (2018),  256–278
  8. Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$

    SciPost Phys., 4 (2018),  6–30
  9. Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$

    J. Integrab. Syst., 2 (2017),  1–31
  10. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation

    J. Phys. A, 50:3 (2017), 34004, 22 pp.
  11. Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 923 (2017),  277–311
  12. Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors

    Uspekhi Mat. Nauk, 72:1(433) (2017),  37–106
  13. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula

    J. Phys. A, 49:45 (2016), 454005, 28 pp.
  14. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    Nuclear Phys. B, 911 (2016),  902–927
  15. Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models

    SIGMA, 12 (2016), 099, 22 pp.
  16. Form factors of local operators in a one-dimensional two-component Bose gas

    J. Phys. A, 48:43 (2015), 435001, 21 pp.
  17. Zero modes method and form factors in quantum integrable models

    Nuclear Phys. B, 893 (2015),  459–481
  18. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

    SIGMA, 11 (2015), 064, 18 pp.
  19. ${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors

    SIGMA, 11 (2015), 063, 20 pp.
  20. Bethe vectors of quantum integrable models based on $U_q(\hat{\mathfrak{gl}}_N)$

    J. Phys. A, 47:10 (2014), 105202, 16 pp.
  21. Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix

    Nuclear Phys. B, 881 (2014),  343–368
  22. Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix

    TMF, 181:3 (2014),  515–537
  23. Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case

    TMF, 180:1 (2014),  51–71
  24. Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient

    TMF, 178:3 (2014),  363–389
  25. Form factors in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2013:4 (2013), 4033, 16 pp.
  26. Bethe vectors of $GL(3)$-invariant integrable models

    J. Stat. Mech., 2013:2 (2013), 2020, 24 pp.
  27. Bethe Vectors of Quantum Integrable Models with $\mathrm{GL}(3)$ Trigonometric $R$-Matrix

    SIGMA, 9 (2013), 058, 23 pp.
  28. Highest coefficient of scalar products in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2012:9 (2012), 9003, 17 pp.
  29. The algebraic Bethe ansatz for scalar products in $SU(3)$-invariant integrable models

    J. Stat. Mech., 2012 (2012), 10017, 25 pp.
  30. Universal Bethe Ansatz and Scalar Products of Bethe Vectors

    SIGMA, 6 (2010), 094, 22 pp.
  31. On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$

    Algebra i Analiz, 21:4 (2009),  196–240
  32. Generating Series for Nested Bethe Vectors

    SIGMA, 4 (2008), 081, 23 pp.
  33. Projection method and a universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_{N+1})$

    TMF, 150:2 (2007),  286–303
  34. Weight Function for the Quantum Affine Algebra $U_{q}(\widehat{\frak{sl}}_3)$

    TMF, 145:1 (2005),  3–34
  35. Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model

    TMF, 136:1 (2003),  30–51
  36. Factorization of the universal $\mathcal R $-matrix for ${U_q(\widehat{sl}_2)} $

    TMF, 124:2 (2000),  179–214
  37. Zamolodchikov–Faddeev algebras for Yangian doubles at level 1

    TMF, 110:1 (1997),  25–45
  38. On the bosonization of $L$-operators for quantum affine algebra $U_q(\mathfrak{sl}_2)$

    TMF, 104:1 (1995),  64–77
  39. The dressing techniques for intermediate hierarchies

    TMF, 103:3 (1995),  422–436
  40. On the continuum limit of the conformal matrix models

    TMF, 95:2 (1993),  317–340


© Steklov Math. Inst. of RAS, 2026