RUS  ENG
Full version
PEOPLE

Korepanov Igor Germanovich

Publications in Math-Net.Ru

  1. Heptagon relation in a direct sum

    Algebra i Analiz, 33:4 (2021),  125–140
  2. Integrable 3D statistical models on six-valent graphs

    Trudy Mat. Inst. Steklova, 302 (2018),  214–233
  3. Parameterizing the Simplest Grassmann–Gaussian Relations for Pachner Move 3–3

    SIGMA, 9 (2013), 053, 19 pp.
  4. Pentagon Relations in Direct Sums and Grassmann Algebras

    SIGMA, 9 (2013), 030, 16 pp.
  5. Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves

    SIGMA, 7 (2011), 117, 23 pp.
  6. A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds

    SIGMA, 6 (2010), 032, 29 pp.
  7. A matrix solution of the pentagon equation with anticommuting variables

    TMF, 163:3 (2010),  513–528
  8. Geometric torsions and an Atiyah-style topological field theory

    TMF, 158:3 (2009),  405–418
  9. Geometric torsions and invariants of manifolds with a triangulated boundary

    TMF, 158:1 (2009),  98–114
  10. Geometry of Euclidean tetrahedra and knot invariants

    Fundam. Prikl. Mat., 11:4 (2005),  105–117
  11. Pachner Move $3\to 3$ and Affine Volume-Preserving Geometry in $\mathbb R^3$

    SIGMA, 1 (2005), 021, 7 pp.
  12. Exact solutions and mixing in an algebraic dynamical system

    TMF, 143:1 (2005),  131–149
  13. $SL(2)$-Solution of the Pentagon Equation and Invariants of Three-Dimensional Manifolds

    TMF, 138:1 (2004),  23–34
  14. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III. Moves $1\leftrightarrow5$ and Related Structures

    TMF, 135:2 (2003),  179–195
  15. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves $2\leftrightarrow 4$

    TMF, 133:1 (2002),  24–35
  16. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves $3\to 3$.

    TMF, 131:3 (2002),  377–388
  17. A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$

    TMF, 129:1 (2001),  14–19
  18. Multidimensional analogues of the geometric $s\leftrightarrow t$ duality

    TMF, 124:1 (2000),  169–176
  19. Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation

    TMF, 120:1 (1999),  54–63
  20. Fundamental mathematical structures of integrable models

    TMF, 118:3 (1999),  405–412
  21. Functional tetrahedron equation

    TMF, 117:3 (1998),  370–384
  22. Vacuum curves and classical integrable systems in $2+1$ discrete dimensions

    Zap. Nauchn. Sem. POMI, 235 (1996),  273–286
  23. A dynamical system connected with the inhomogeneous six-vertex model. II. Evolution of orthogonal and symplectic matrices: An algebraic-geometric description

    Zap. Nauchn. Sem. POMI, 224 (1995),  225–239
  24. Vacuum curves of $\mathcal L$-operators associated with the six-vertex model

    Algebra i Analiz, 6:2 (1994),  176–194
  25. A dynamical system connected with inhomogeneous $6$-vertex model

    Zap. Nauchn. Sem. POMI, 215 (1994),  178–196
  26. Latent symmetries in the six-vertex model of statistical physics

    Zap. Nauchn. Sem. POMI, 215 (1994),  163–177
  27. Tetrahedron equation and the algebraic geometry

    Zap. Nauchn. Sem. POMI, 209 (1994),  137–149


© Steklov Math. Inst. of RAS, 2026