RUS  ENG
Full version
PEOPLE

Grigoryan Suren Arshakovich

Publications in Math-Net.Ru

  1. Grading of a semigroup $C^*$-algebra by a local group

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7,  85–90
  2. Endomorphisms of the Toeplitz algebra

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:1 (2023),  35–48
  3. On a class of local groups and their representations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 2,  76–82
  4. On $C^*$-algebras generated by the set of probability distributions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8,  66–71
  5. Limits of Inductive Sequences of Toeplitz–Cuntz Algebras

    Trudy Mat. Inst. Steklova, 313 (2021),  67–77
  6. Local groups and their representations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 6,  73–78
  7. Nets of graded $C^*$-algebras over partially ordered sets

    Algebra i Analiz, 30:6 (2018),  1–19
  8. $C^*$-algebras generated by mappings. Classification of invariant subspaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7,  16–35
  9. $C^*$-algebras generated by mappings. Criterion of irreducibility

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 2,  10–22
  10. On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:2 (2016),  180–193
  11. Group-graded systems and algebras

    Zap. Nauchn. Sem. POMI, 437 (2015),  5–14
  12. Operator approach to quantization of semigroups

    Mat. Sb., 205:3 (2014),  15–40
  13. On compact quantum semigroup $QS_\mathrm{red}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 10,  63–68
  14. A compact quantum semialgebra generated by an isometry

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 10,  89–93
  15. $AF$-subalgebras of a $C^*$-algebra generated by a mapping

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  82–87
  16. $C^*$-Algebras Generated by Mappings

    Mat. Zametki, 87:5 (2010),  694–703
  17. $C^*$-algebras generated by cancellative semigroups

    Sibirsk. Mat. Zh., 51:1 (2010),  16–25
  18. $C^*$-algebras generated by semigroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 10,  68–71
  19. On a covering group theorem and its applications

    Lobachevskii J. Math., 10 (2002),  9–16
  20. On an Algebraic Extension of $A(E)$

    Mat. Zametki, 72:5 (2002),  649–653
  21. Linear multiplicative functionals of algebras of $S$-analytic functions on groups

    Lobachevskii J. Math., 9 (2001),  29–35
  22. Group structure in finite coverings of compact solenoidal groups

    Lobachevskii J. Math., 6 (2000),  39–46
  23. The divisor of a generalized analytic function

    Mat. Zametki, 61:5 (1997),  655–661
  24. Generalized analytic functions

    Uspekhi Mat. Nauk, 49:2(296) (1994),  3–42
  25. Generalized meromorphic functions

    Izv. RAN. Ser. Mat., 57:1 (1993),  147–166
  26. Real parts of functional algebras

    Mat. Zametki, 50:3 (1991),  20–26
  27. On a property of almost-periodic analytic functions

    Mat. Zametki, 45:4 (1989),  13–18
  28. The distribution of values of generalized analytic functions

    Dokl. Akad. Nauk SSSR, 296:6 (1987),  1293–1296
  29. On uniform algebras containing $A(K)$

    Uspekhi Mat. Nauk, 40:2(242) (1985),  169–170
  30. On polynomial extensions of commutative Banach algebras

    Uspekhi Mat. Nauk, 39:1(235) (1984),  129–130
  31. Uniform algebras of operator fields

    Zap. Nauchn. Sem. LOMI, 123 (1983),  185–189
  32. On regular and normal algebras

    Uspekhi Mat. Nauk, 33:5(203) (1978),  167–168
  33. Types of uniform algebras

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  85–86
  34. Some properties of functional algebras from the point of view of orthogonal measures

    Mat. Zametki, 18:3 (1975),  327–331
  35. On algebras of finite type

    Uspekhi Mat. Nauk, 30:6(186) (1975),  167–168
  36. Function algebras of finite type

    Uspekhi Mat. Nauk, 29:6(180) (1974),  155–156


© Steklov Math. Inst. of RAS, 2026