RUS  ENG
Full version
PEOPLE

Koreshkov Nikolai Aleksandrovich

Publications in Math-Net.Ru

  1. Simple sandwich algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 10,  70–74
  2. Inner derivations of simple Lie pencils of rank $1$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  15–22
  3. Tori in simple Lie pencils

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 6,  48–53
  4. Symmetrical simple Lie sheaves of rank 1

    Sibirsk. Mat. Zh., 57:3 (2016),  650–657
  5. Associative $n$-Tuple Algebras

    Mat. Zametki, 96:1 (2014),  36–50
  6. Simple Lie sheaves of small dimension

    Sibirsk. Mat. Zh., 55:3 (2014),  525–539
  7. Lie sheaves of small dimensions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 11,  3–19
  8. Lie and Engel theorems for $n$-tuple Lie algebras

    Sibirsk. Mat. Zh., 54:3 (2013),  601–609
  9. Triangulation of $n$-tuple solvable Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 2,  65–69
  10. Homogeneously simple associative algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 5,  19–24
  11. Finite-dimensional homogeneously simple algebras of associative type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9,  36–42
  12. Nilpotency of $n$-tuple Lie algebras and associative $n$-tuple algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  33–38
  13. Lie Algebras and Algebras of Associative Type

    Mat. Zametki, 88:1 (2010),  43–52
  14. $n$-tuple algebras of associative type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 12,  34–42
  15. Modules and ideals of algebras of associative type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8,  25–34
  16. A class of algebras of associative type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 3,  38–46
  17. On the Nilpotency and Decomposition of Lie-Type Algebras

    Mat. Zametki, 82:3 (2007),  361–372
  18. Nilpotency and decomposition of algebras of associative type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 9,  34–42
  19. Engel's theorem for Lie-type algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 7,  30–36
  20. On the nilpotency of Lie-type Engel algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3,  36–40
  21. Central elements and invariants in modular Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 7,  22–26
  22. Casimir elements of $\mathbb Z$-forms of modular Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 3,  32–35
  23. Cartan Subalgebras with Engel Decomposition

    Mat. Zametki, 72:4 (2002),  638–640
  24. On the nilpotency of Engel algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 11,  17–21
  25. On the Simultaneous Triangulability of Matrices

    Mat. Zametki, 68:5 (2000),  648–652
  26. Rings of invariants of special and contact Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 8,  34–38
  27. On invariants of some modular Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 7,  24–28
  28. An invariant of the algebra $W_n$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  40–42
  29. Central elements in the algebra $U(K_m)$.

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 5,  16–22
  30. A deformation of a Hamiltonian Lie algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  69–70
  31. On irreducible representations of maximal subalgebras of Lie algebras of Cartan type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 11,  26–32
  32. Irreducible representations of the Lie $p$-algebra $W_2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 4,  39–46
  33. Irreducible representations of the Hamiltonian algebra of dimension $p^2-2$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 10,  37–46
  34. Irreducible representations of a Lie algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 9,  49–57

  35. Algebraic studies at Kazan University from V. V. Morozov to our days

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  44–59
  36. Life and works of V. V. Morozov (to the 100th anniversary)

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  6–12


© Steklov Math. Inst. of RAS, 2026