|
|
Publications in Math-Net.Ru
-
On generalized orthogonal partial metric spaces: $\alpha$, $\beta$-admissible mappings and fixed point results
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 97, 5–16
-
Set-valued mappings: fixed point results with $\beta$-function and some applications
Izv. IMI UdGU, 63 (2024), 61–79
-
On bounded metric spaces: common fixed point results with an application to nonlinear integral equations
Probl. Anal. Issues Anal., 13(31):1 (2024), 82–99
-
A common fixed-point result via a supplemental function with an application
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024), 790–798
-
Remarks and a generalization of Hedudus-Szilagyis fixed point theorem
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:1 (2024), 152–160
-
Common fixed point results: New developments on commuting mappings and application in dynamic programming
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024), 366–375
-
A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5, 58–70
-
A new common fixed point theorem on orthogonal metric spaces and an application
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023), 737–744
-
A note on common fixed point theorems in a bounded metric space
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:2 (2023), 241–249
-
Fixed point theorem via measure of non-compactness for a new kind of contractions
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:2 (2023), 270–276
-
On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions
Probl. Anal. Issues Anal., 11(29):3 (2022), 109–124
-
Fixed point results for condensing operators via measure of non-compactness
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:3 (2022), 542–549
-
Fixed point theorems for new contractions with application in dynamic programming
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:2 (2021), 338–348
© , 2026