RUS  ENG
Full version
PEOPLE

Touail Yousef

Publications in Math-Net.Ru

  1. On generalized orthogonal partial metric spaces: $\alpha$, $\beta$-admissible mappings and fixed point results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 97,  5–16
  2. Set-valued mappings: fixed point results with $\beta$-function and some applications

    Izv. IMI UdGU, 63 (2024),  61–79
  3. On bounded metric spaces: common fixed point results with an application to nonlinear integral equations

    Probl. Anal. Issues Anal., 13(31):1 (2024),  82–99
  4. A common fixed-point result via a supplemental function with an application

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  790–798
  5. Remarks and a generalization of Hedudus-Szilagyis fixed point theorem

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:1 (2024),  152–160
  6. Common fixed point results: New developments on commuting mappings and application in dynamic programming

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024),  366–375
  7. A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5,  58–70
  8. A new common fixed point theorem on orthogonal metric spaces and an application

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023),  737–744
  9. A note on common fixed point theorems in a bounded metric space

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:2 (2023),  241–249
  10. Fixed point theorem via measure of non-compactness for a new kind of contractions

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10:2 (2023),  270–276
  11. On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions

    Probl. Anal. Issues Anal., 11(29):3 (2022),  109–124
  12. Fixed point results for condensing operators via measure of non-compactness

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:3 (2022),  542–549
  13. Fixed point theorems for new contractions with application in dynamic programming

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:2 (2021),  338–348


© Steklov Math. Inst. of RAS, 2026