RUS  ENG
Full version
PEOPLE

Nasibov Sharif Mamed ogly

Publications in Math-Net.Ru

  1. On one interpolation inequality and its application to the Bürgers equatio

    TMF, 214:2 (2023),  239–242
  2. A Remark on the Steklov–Poincaré Inequality

    Mat. Zametki, 110:2 (2021),  234–238
  3. Nonlinear evolutionary Schrödinger equation in the supercritical case

    TMF, 209:3 (2021),  427–437
  4. On the absence of global periodic solutions of a Schrödinger-type nonlinear evolution equation

    TMF, 208:1 (2021),  69–73
  5. Absence of global periodic solutions for a Schrödinger-type nonlinear evolution equation

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  53–55
  6. A Sobolev Interpolation Inequality and a Gross–Sobolev Logarithmic Inequality

    Mat. Zametki, 107:6 (2020),  894–901
  7. Collapse rate of solutions of the Cauchy problem for the nonlinear Schrödinger equation

    TMF, 203:3 (2020),  342–350
  8. On the Collapse of Solutions of the Cauchy Problem for the Cubic Schrödinger Evolution Equation

    Mat. Zametki, 105:1 (2019),  76–83
  9. Nonlinear evolutionary Schrödinger equation in a two-dimensional domain

    TMF, 201:1 (2019),  118–125
  10. Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation

    TMF, 195:2 (2018),  190–196
  11. On the Equation $\Delta u+q(x)u=0$

    Mat. Zametki, 101:1 (2017),  101–109
  12. On a Generalization of the Entropy Inequality

    Mat. Zametki, 99:2 (2016),  278–282
  13. Mixed Problem for a Cubic Schrödinger Evolution Equation with a Cubic Dissipative Term

    Mat. Zametki, 96:4 (2014),  539–547
  14. On the Self-Trapping of the Solutions of Nonlinear Schrödinger Evolution Equation

    Mat. Zametki, 90:5 (2011),  789–792
  15. A sharp constant in a Sobolev–Nirenberg inequality and its application to the Schrödinger equation

    Izv. RAN. Ser. Mat., 73:3 (2009),  127–150
  16. On an Integral Inequality and Its Application to the Proof of the Entropy Inequality

    Mat. Zametki, 84:2 (2008),  231–237
  17. On an inequality of Trudinger type and its application to a nonlinear Schrödinger equation

    Mat. Zametki, 80:5 (2006),  786–789
  18. Blow-Up of Solutions of the Mixed Problem for the Nonlinear Ginzburg–Landau–Schrödinger Evolution Equation

    Differ. Uravn., 39:8 (2003),  1087–1091
  19. Optimal constants in some Sobolev inequalities and their applications to the nonlinear Schrödinger equation

    Dokl. Akad. Nauk SSSR, 307:3 (1989),  538–542
  20. On a nonlinear Schrödinger equation with a dissipative term

    Dokl. Akad. Nauk SSSR, 304:2 (1989),  285–289
  21. Stability, breakdown, damping and self-channeling of solutions of a nonlinear Schrödinger equation

    Dokl. Akad. Nauk SSSR, 285:4 (1985),  807–811
  22. A nonlinear equation of Schrödinger type

    Differ. Uravn., 16:4 (1980),  660–670
  23. The numerical extraction of bounded solutions for systems of linear partial differential equations of evolution type

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  119–135


© Steklov Math. Inst. of RAS, 2026