RUS  ENG
Full version
PEOPLE

Rubin Boris Semionovich

Publications in Math-Net.Ru

  1. Estimates for potentials with oscillating kernels that are connected with the Helmholtz equation

    Differ. Uravn., 26:9 (1990),  1608–1613
  2. Errata to the article “Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization”

    Mat. Sb., 181:2 (1990),  286–287
  3. An integral equation of the first kind with weak singularity in an $n$-dimensional ball

    Dokl. Akad. Nauk SSSR, 309:6 (1989),  1313–1317
  4. Radial-spherical convolution operators in weighted $L_p$ spaces

    Dokl. Akad. Nauk SSSR, 309:2 (1989),  279–282
  5. Fourier analysis of radial-spherical convolutions in $R^n$. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  36–44
  6. Fourier analysis of radial-spherical convolutions in $R^n$. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 9,  53–60
  7. Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization

    Mat. Sb., 180:11 (1989),  1524–1547
  8. Multiplier operators and hypersingular integrals that are connected with Cauchy problems for the wave equation

    Dokl. Akad. Nauk SSSR, 302:1 (1988),  20–23
  9. Fractional integrals with a limit index

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  69–72
  10. Inversion of potentials in $\mathbf{R}^n$ with the aid of Gauss–Weierstrass integrals

    Mat. Zametki, 41:1 (1987),  34–42
  11. Description and inversion of Bessel potentials by means of hypersingular integrals with weighted differences

    Differ. Uravn., 22:10 (1986),  1805–1818
  12. A method of characterization and inversion of Bessel and Riesz potentials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 5,  59–68
  13. Inversion of parabolic potentials with $L_p$-densities

    Mat. Zametki, 39:6 (1986),  831–840
  14. Inversion and description of parabolic potentials with $L_p$-densities

    Dokl. Akad. Nauk SSSR, 284:3 (1985),  535–538
  15. Inversion of Riesz potentials on an $n$-dimensional ball and its exterior

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 6,  81–85
  16. Riesz potentials and operators of Riemann-Liouville type in a half space

    Dokl. Akad. Nauk SSSR, 279:1 (1984),  30–34
  17. One-dimensional representation, inversion, and certain properties of the Riesz potentials of radial functions

    Mat. Zametki, 34:4 (1983),  521–533
  18. Radial Riesz potentials on the disk and fractional integration operators

    Dokl. Akad. Nauk SSSR, 263:6 (1982),  1299–1302
  19. An imbedding theorem for images of convolution operators on a finite segment, and operators of potential type. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 2,  49–59
  20. An imbedding theorem for images of convolution operators on a finite segment, and operators of potential type. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 1,  53–63
  21. Noether's theory for generalized Abel equations with a real index

    Differ. Uravn., 16:5 (1980),  917–927
  22. An imbedding theorem for convolutions on a finite interval and its application to integral equations of the first kind

    Dokl. Akad. Nauk SSSR, 244:6 (1979),  1322–1326
  23. The Noetherianness of operators of potential type in weight spaces of functions $p$-summable with weight

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 8,  81–90
  24. Operators of potential type on a segment of the real line

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 6,  73–81
  25. On operators of potential type in weight spaces on an arbitrary contour

    Dokl. Akad. Nauk SSSR, 207:2 (1972),  300–303

  26. Stefan Grigorievich Samko (on the occasion of his 80th birthday)

    Vladikavkaz. Mat. Zh., 23:3 (2021),  126–129


© Steklov Math. Inst. of RAS, 2026