RUS  ENG
Full version
PEOPLE

Kazantsev Dmitrii Yur'evich

Publications in Math-Net.Ru

  1. Формирование твердых растворов InPAs методом твердофазного замещения

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:6 (2026),  49–52
  2. Hydrogen defects in diamonds: research and definition of content of N$_3$VH content using secondary ion mass spectrometry and infrared spectroscopy

    Optics and Spectroscopy, 133:6 (2025),  626–636
  3. Photovoltaic laser power converter based on germanium

    Zhurnal Tekhnicheskoi Fiziki, 94:5 (2024),  801–807
  4. Study of growth conditions effect on GaN doping with carbon from propane and methane

    Fizika i Tekhnika Poluprovodnikov, 58:3 (2024),  134–141
  5. Solid-phase substitution processes with phosphorus in InAs and InSb

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:20 (2023),  20–22
  6. Influence of source composition on the planar growth of nanowires during catalytic growth in a quasi-closed volume

    Fizika i Tekhnika Poluprovodnikov, 56:11 (2022),  1082–1087
  7. Transformation of N-polar inversion domains from AlN buffer layers during the growth of AlGaN layers

    Fizika i Tekhnika Poluprovodnikov, 56:7 (2022),  677–684
  8. The effect of liquid Silicon on the AlN crystal growth

    Fizika i Tekhnika Poluprovodnikov, 56:6 (2022),  527
  9. Obtaining anisotypic heterostructures for a GaSb-based photovoltaic converter due to solid-phase substitution reactions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:21 (2022),  3–5
  10. Development and study of the $p$$i$$n$-диодов GaAs/AlGaAs tunnel diodes for multijunction converters of high-power laser radiation

    Fizika i Tekhnika Poluprovodnikov, 54:3 (2020),  285–291
  11. Investigation of the effect of doping on transition layers of anisotype GaInAsP and InP heterostructures obtained by the method of MOCVD

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:19 (2020),  22–24
  12. Investigation of composition uniformity on thickness of GaInAsP layers grown on InP substrates by vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 53:11 (2019),  1512–1518
  13. Quantum yield of a silicon XUV avalanche photodiode in the 320–1100 nm wavelength range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:24 (2019),  10–13
  14. Luminescence properties of GaInAsP layers with graded composition–depth profiles grown on InP substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:20 (2019),  22–25
  15. Characteristics of a silicon avalanche photodiode for the near-IR spectral range

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:15 (2019),  40–42
  16. Undoped high-resistance GaN buffer layer for AlGaN/GaN high-electron-mobility transistors

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:15 (2019),  21–24
  17. Change in the character of biaxial stresses with an increase in $x$ from 0 to 0.7 in Al$_{x}$Ga$_{1-x}$N:Si layers obtained by ammonia molecular beam epitaxy

    Fizika i Tekhnika Poluprovodnikov, 52:2 (2018),  233–237
  18. Mobility of the two-dimensional electron gas in DA-$p$HEMT heterostructures with various $\delta$$n$-layer profile widths

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  48–56
  19. A study of the composition gradient of GaInAsP layers formed on InP by vapor-phase epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:24 (2018),  17–24
  20. The effect of dose of nitrogen-ion implantation on the concentration of point defects introduced into GaAs layers

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:13 (2018),  44–50
  21. Mobility of the two-dimensional electron gas in DA-$p$HEMT heterostructures with various $\delta$$n$-layer profile widths

    Fizika i Tekhnika Poluprovodnikov, 51:12 (2017),  1696
  22. Formation of a $p$-type emitter with the involvement of surfactants in GaAs photoelectric converters

    Fizika i Tekhnika Poluprovodnikov, 51:5 (2017),  699–703
  23. A study of transition regions in InAsPSb/InAs heterostructures grown by MOVPE

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:19 (2017),  78–86
  24. Electrochemical lithiation of silicon with varied crystallographic orientation

    Fizika i Tekhnika Poluprovodnikov, 50:7 (2016),  979–986
  25. Solar-blind Al$_{x}$Ga$_{1-x}$N ($x>$ 0.45) $p$$i$$n$ photodiodes with a polarization-$p$-doped emitter

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:12 (2016),  57–63
  26. Semi-insulating GaN:C epilayers grown by metalorganic vapor phase epitaxy using propane as a carbon source

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:10 (2016),  85–91
  27. On the relationship between radiation-stimulated photoluminescence and nitrogen atoms in $p$-4H-SiC

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:23 (2015),  61–67
  28. Decrease in the binding energy of donors in heavily doped GaN:Si layers

    Fizika i Tekhnika Poluprovodnikov, 48:9 (2014),  1164–1168
  29. Transport parameters and optical properties of selectively doped Ga(Al)As/Zn(Mn)Se heterovalent structures with a two-dimensional hole channel

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  32–35
  30. High-efficiency GaSb photocells

    Fizika i Tekhnika Poluprovodnikov, 47:2 (2013),  273–279
  31. Photoresponse recovery in silicon photodiodes upon VUV irradiation

    Fizika i Tekhnika Poluprovodnikov, 47:2 (2013),  178–181
  32. Electrochemical capacitance-voltage profiling of the free-carrier concentration in HEMT heterostructures based on InGaAs/AlGaAs/GaAs compounds

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  829–835
  33. Evolution of the deformation state and composition as a result of changes in the number of quantum wells in multilayered InGaN/GaN structures

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  770–777
  34. Effect of the silicon doping level and features of nanostructural arrangement on decrease in external quantum efficiency in InGaN/GaN light-emitting diodes with increasing current

    Fizika i Tekhnika Poluprovodnikov, 45:3 (2011),  425–431
  35. Mass transfer in thermo-electric-field modification of glass-metal nanocomposites

    Zhurnal Tekhnicheskoi Fiziki, 80:11 (2010),  53–61
  36. Active region based on graded-gap InGaN/GaN superlattices for high-power 440- to 470-nm light-emitting diodes

    Fizika i Tekhnika Poluprovodnikov, 44:1 (2010),  96–100


© Steklov Math. Inst. of RAS, 2026