RUS  ENG
Full version
PEOPLE

Salikhov Vladislav Khasanovich

Publications in Math-Net.Ru

  1. On irrationality measure of some values of $\arctan \frac{1}{n}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12,  32–40
  2. On the Irrationality Measure of $\ln7$

    Mat. Zametki, 107:3 (2020),  366–375
  3. Approximation of $\ln{\frac{\sqrt{5}-1}{2}}$ by numbers of the field $\mathbb Q\left(\sqrt{5}\right)$

    Chebyshevskii Sb., 20:4 (2019),  339–356
  4. On irrationality measure of $\ln{\frac{5}{3}}$

    Chebyshevskii Sb., 20:4 (2019),  330–338
  5. On astimate of irrationality measure of the logariphms of some rational numbers

    Chebyshevskii Sb., 20:4 (2019),  226–235
  6. On irrationality measure $\mathop{\mathrm{arctg}}\frac{1}{2}$

    Chebyshevskii Sb., 20:4 (2019),  58–68
  7. On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  69–75
  8. Symmetrized polynomials in a problem of estimating of the irrationality measure of number $\ln 3$

    Chebyshevskii Sb., 19:1 (2018),  15–25
  9. Approximating $\ln 2$ by numbers in the field $\mathbb{Q}(\sqrt{2}\,)$

    Izv. RAN. Ser. Mat., 82:3 (2018),  108–135
  10. Andrei Borisovich Shidlovskii

    Chebyshevskii Sb., 16:3 (2015),  6–34
  11. Symmetrized Version of the Markovecchio Integral in the Theory of Diophantine Approximations

    Mat. Zametki, 97:4 (2015),  483–492
  12. On the Measure of Irrationality of the Number $\pi$

    Mat. Zametki, 88:4 (2010),  583–593
  13. On the irrationality measure of $\pi$

    Uspekhi Mat. Nauk, 63:3(381) (2008),  163–164
  14. On multiple integrals represented as a linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$

    Fundam. Prikl. Mat., 11:6 (2005),  143–178
  15. Algebraic Relations between the Hypergeometric E-Function and Its Derivatives

    Mat. Zametki, 71:6 (2002),  832–844
  16. Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)

    Mat. Zametki, 64:2 (1998),  273–284
  17. A criterion for the algebraic independence of values of a class of hypergeometric $E$-functions

    Mat. Sb., 181:2 (1990),  189–211
  18. Algebraic independence of values of hypergeometric $E$-functions

    Dokl. Akad. Nauk SSSR, 307:2 (1989),  284–287
  19. Irreducibility of a class of hypergeometric equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 4,  7–10
  20. On reducibility and linear reducibility of linear differential equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 3,  3–8
  21. Formal solutions of linear differential equations and their application in the theory of transcendental numbers

    Tr. Mosk. Mat. Obs., 51 (1988),  223–256
  22. Linear irreducibility of differential equations and algebraic independence of the values of hypergeometric $E$-functions

    Uspekhi Mat. Nauk, 41:3(249) (1986),  201–202
  23. On the algebraic irreducibility of the set of linear differential equations

    Izv. Akad. Nauk SSSR Ser. Mat., 49:1 (1985),  194–210
  24. On the algebraic independence of the values of hypergeometric $E$-functions

    Uspekhi Mat. Nauk, 39:2(236) (1984),  185–186
  25. Algebraic irreducibility of a collection of linear differential equations

    Dokl. Akad. Nauk SSSR, 254:4 (1980),  806–808
  26. On differential irreducibility of a class of differential equations

    Izv. Akad. Nauk SSSR Ser. Mat., 44:1 (1980),  176–202
  27. On the differential irreducibility of a class of differential equations

    Dokl. Akad. Nauk SSSR, 235:1 (1977),  30–33
  28. The algebraic independence of the values of $E$-functions satisfying linear first-order differential equations

    Mat. Zametki, 13:1 (1973),  29–40

  29. Yuri Valentinovich Nesterenko (to the 75th anniversary)

    Chebyshevskii Sb., 23:1 (2022),  10–20
  30. Nesterenko Yuri Valentinovich (70 anniversary of Yu. V. Nesterenko)

    Chebyshevskii Sb., 17:4 (2016),  211–2210


© Steklov Math. Inst. of RAS, 2026