|
|
Publications in Math-Net.Ru
-
One limit theorem for one-dimensional branching Wiener processes with point sources of branching
Teor. Veroyatnost. i Primenen., 70:3 (2025), 419–436
-
A limit theorem for a branching Wiener process with a singular branching intensity of a special type
Zap. Nauchn. Sem. POMI, 544 (2025), 170–184
-
On Some Properties of the Fractional Derivative of the Brownian Local Time
Trudy Mat. Inst. Steklova, 324 (2024), 109–123
-
One remark to the Itô formula
Teor. Veroyatnost. i Primenen., 69:2 (2024), 285–304
-
Resolvent stochastic processes
Algebra i Analiz, 35:1 (2023), 192–203
-
On a family of random operators
Teor. Veroyatnost. i Primenen., 68:3 (2023), 544–564
-
Reflecting Lévy processes and associated families of linear operators. II
Teor. Veroyatnost. i Primenen., 67:1 (2022), 23–36
-
On the properties of a class of random operators
Zap. Nauchn. Sem. POMI, 510 (2022), 143–164
-
On a family of complex-valued stochastic processes
Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 38–41
-
Approximation of a Wiener process local time by functionals of random walks
Teor. Veroyatnost. i Primenen., 66:1 (2021), 73–93
-
A limit theorem for regime-switching diffusion processes
Zap. Nauchn. Sem. POMI, 495 (2020), 267–276
-
Reflecting Lévy processes and associated families of linear operators
Teor. Veroyatnost. i Primenen., 64:3 (2019), 417–441
-
Approximation of the evolution operator by expectations of
functionals of sums of independent random variables
Teor. Veroyatnost. i Primenen., 64:1 (2019), 17–35
-
An extension of local time
Zap. Nauchn. Sem. POMI, 486 (2019), 148–157
-
Probabilistic Approximation of the Evolution Operator
Funktsional. Anal. i Prilozhen., 52:2 (2018), 25–39
-
Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. II
Teor. Veroyatnost. i Primenen., 62:3 (2017), 446–467
-
A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a complex matrix $S$
Zap. Nauchn. Sem. POMI, 466 (2017), 134–144
-
Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I
Teor. Veroyatnost. i Primenen., 61:4 (2016), 733–752
-
Analytic diffusion processes: definition, properties, limit theorems
Teor. Veroyatnost. i Primenen., 61:2 (2016), 300–326
-
On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation
Zap. Nauchn. Sem. POMI, 454 (2016), 158–175
-
Limit theorems on convergence of expectations of functionals of sums of independent random variables to solutions
of initial boundary value problems
Teor. Veroyatnost. i Primenen., 59:2 (2014), 233–251
-
On a probabilistic method of solving a one-dimensional initial-boundary value problem
Teor. Veroyatnost. i Primenen., 58:2 (2013), 255–281
-
A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$
Zap. Nauchn. Sem. POMI, 420 (2013), 88–102
-
The probabilistic approach to the solution of the string wave equation
Zap. Nauchn. Sem. POMI, 408 (2012), 289–302
-
A probabilistic approximation of the Cauchy problem solution of some evolution equations
Zap. Nauchn. Sem. POMI, 396 (2011), 111–143
-
Convergence of independent random variable sum distributions to signed measures and applications to the large deviations problem
Theory Stoch. Process., 16(32):1 (2010), 94–102
-
The probabilistic representation of the decisions of a class of evolution equations
Zap. Nauchn. Sem. POMI, 384 (2010), 238–266
-
On Spectral Properties of the Discrete Schrödinger Operator with Pure Imaginary Finite Potential
Mat. Zametki, 85:3 (2009), 451–455
-
The theorems about stochastic integral distributions convergence to signed measures and the local limit theorems for large deviations
Zap. Nauchn. Sem. POMI, 368 (2009), 201–228
-
Lévy–Khinchin representation of a class of signed measures
Zap. Nauchn. Sem. POMI, 361 (2008), 145–166
-
On the Similarity of Some Differential Operators to Self-Adjoint Ones
Mat. Zametki, 72:2 (2002), 292–302
-
The Similarity Problem for Non-Self-adjoint Operators with Absolutely Continuous Spectrum
Funktsional. Anal. i Prilozhen., 34:2 (2000), 78–81
-
On the similarity of some singular differential operators to selfadjoint ones
Zap. Nauchn. Sem. POMI, 270 (2000), 336–349
-
Necessary conditions for similarity of an operator to a self-adjoint one
Funktsional. Anal. i Prilozhen., 26:4 (1992), 80–83
-
Similarity of an operator to an isometric operator
Funktsional. Anal. i Prilozhen., 23:2 (1989), 77–78
© , 2026