RUS  ENG
Full version
PEOPLE

Faddeev Mikhail Mikhailovich

Publications in Math-Net.Ru

  1. One limit theorem for one-dimensional branching Wiener processes with point sources of branching

    Teor. Veroyatnost. i Primenen., 70:3 (2025),  419–436
  2. A limit theorem for a branching Wiener process with a singular branching intensity of a special type

    Zap. Nauchn. Sem. POMI, 544 (2025),  170–184
  3. On Some Properties of the Fractional Derivative of the Brownian Local Time

    Trudy Mat. Inst. Steklova, 324 (2024),  109–123
  4. One remark to the Itô formula

    Teor. Veroyatnost. i Primenen., 69:2 (2024),  285–304
  5. Resolvent stochastic processes

    Algebra i Analiz, 35:1 (2023),  192–203
  6. On a family of random operators

    Teor. Veroyatnost. i Primenen., 68:3 (2023),  544–564
  7. Reflecting Lévy processes and associated families of linear operators. II

    Teor. Veroyatnost. i Primenen., 67:1 (2022),  23–36
  8. On the properties of a class of random operators

    Zap. Nauchn. Sem. POMI, 510 (2022),  143–164
  9. On a family of complex-valued stochastic processes

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  38–41
  10. Approximation of a Wiener process local time by functionals of random walks

    Teor. Veroyatnost. i Primenen., 66:1 (2021),  73–93
  11. A limit theorem for regime-switching diffusion processes

    Zap. Nauchn. Sem. POMI, 495 (2020),  267–276
  12. Reflecting Lévy processes and associated families of linear operators

    Teor. Veroyatnost. i Primenen., 64:3 (2019),  417–441
  13. Approximation of the evolution operator by expectations of functionals of sums of independent random variables

    Teor. Veroyatnost. i Primenen., 64:1 (2019),  17–35
  14. An extension of local time

    Zap. Nauchn. Sem. POMI, 486 (2019),  148–157
  15. Probabilistic Approximation of the Evolution Operator

    Funktsional. Anal. i Prilozhen., 52:2 (2018),  25–39
  16. Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. II

    Teor. Veroyatnost. i Primenen., 62:3 (2017),  446–467
  17. A probabilistic approximation of the evolution operator $\exp(t(S\nabla,\nabla))$ with a complex matrix $S$

    Zap. Nauchn. Sem. POMI, 466 (2017),  134–144
  18. Initial-boundary value problems in a bounded domain: probabilistic representations of solutions and limit theorems. I

    Teor. Veroyatnost. i Primenen., 61:4 (2016),  733–752
  19. Analytic diffusion processes: definition, properties, limit theorems

    Teor. Veroyatnost. i Primenen., 61:2 (2016),  300–326
  20. On a limit theorem related to probabilistic representation of the Cauchy problem solution for the Schrödinger equation

    Zap. Nauchn. Sem. POMI, 454 (2016),  158–175
  21. Limit theorems on convergence of expectations of functionals of sums of independent random variables to solutions of initial boundary value problems

    Teor. Veroyatnost. i Primenen., 59:2 (2014),  233–251
  22. On a probabilistic method of solving a one-dimensional initial-boundary value problem

    Teor. Veroyatnost. i Primenen., 58:2 (2013),  255–281
  23. A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$

    Zap. Nauchn. Sem. POMI, 420 (2013),  88–102
  24. The probabilistic approach to the solution of the string wave equation

    Zap. Nauchn. Sem. POMI, 408 (2012),  289–302
  25. A probabilistic approximation of the Cauchy problem solution of some evolution equations

    Zap. Nauchn. Sem. POMI, 396 (2011),  111–143
  26. Convergence of independent random variable sum distributions to signed measures and applications to the large deviations problem

    Theory Stoch. Process., 16(32):1 (2010),  94–102
  27. The probabilistic representation of the decisions of a class of evolution equations

    Zap. Nauchn. Sem. POMI, 384 (2010),  238–266
  28. On Spectral Properties of the Discrete Schrödinger Operator with Pure Imaginary Finite Potential

    Mat. Zametki, 85:3 (2009),  451–455
  29. The theorems about stochastic integral distributions convergence to signed measures and the local limit theorems for large deviations

    Zap. Nauchn. Sem. POMI, 368 (2009),  201–228
  30. Lévy–Khinchin representation of a class of signed measures

    Zap. Nauchn. Sem. POMI, 361 (2008),  145–166
  31. On the Similarity of Some Differential Operators to Self-Adjoint Ones

    Mat. Zametki, 72:2 (2002),  292–302
  32. The Similarity Problem for Non-Self-adjoint Operators with Absolutely Continuous Spectrum

    Funktsional. Anal. i Prilozhen., 34:2 (2000),  78–81
  33. On the similarity of some singular differential operators to selfadjoint ones

    Zap. Nauchn. Sem. POMI, 270 (2000),  336–349
  34. Necessary conditions for similarity of an operator to a self-adjoint one

    Funktsional. Anal. i Prilozhen., 26:4 (1992),  80–83
  35. Similarity of an operator to an isometric operator

    Funktsional. Anal. i Prilozhen., 23:2 (1989),  77–78


© Steklov Math. Inst. of RAS, 2026