RUS  ENG
Full version
PEOPLE

Antonov Vladimir Alekseevich

Publications in Math-Net.Ru

  1. On Finite Groups with Relatively Large Centralizers of Invariant Subgroups

    Mat. Zametki, 95:5 (2014),  643–650
  2. Groups with relatively small normalizers of biprimary subgroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  3–13
  3. On groups with relatively small normalizers of nonabelian subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  23–28
  4. Groups with relatively small normalizers of primary subgroups

    Algebra Logika, 51:5 (2012),  565–578
  5. Finite solvable groups with relatively small nonprimary subgroups normalizers

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 7,  6–10
  6. Finite nilpotent groups with relatively large centralizers of noninvariant subgroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 10,  12–16
  7. On the Mazurov conjecture

    Sib. Èlektron. Mat. Izv., 5 (2008),  8–13
  8. Finite Solvable Groups with $C$-Closed Invariant Subgroups

    Mat. Zametki, 81:5 (2007),  789–791
  9. Double Frobenius groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  3–10
  10. Finite $p$-Groups with Automorphism of a Special Form

    Algebra Logika, 45:4 (2006),  379–389
  11. On groups with relatively large centralizers

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  8–17
  12. Layer-Projective Lattices. II

    Mat. Zametki, 72:2 (2002),  163–170
  13. On Finite Groups with Restrictions on Centralizers

    Mat. Zametki, 71:4 (2002),  483–495
  14. Groups with Small Centralizers

    Mat. Zametki, 69:5 (2001),  643–655
  15. On groups with relatively large centralizers

    Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  27–33
  16. Layer-projective lattices. I

    Mat. Zametki, 63:2 (1998),  170–182
  17. On groups with a lattice of centralizers that is a sublattice of the lattice of subgroups

    Algebra Logika, 33:5 (1994),  475–513
  18. Правильные $C$-решетки и решетки централизаторов

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  17–28
  19. On a class of modular lattices

    Algebra Logika, 30:1 (1991),  3–14
  20. Finite groups in which the lattice of centralizers is a sublattice of the lattice of subgroups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 3,  5–14
  21. Locally finite groups with maximal centralizers of elements

    Mat. Zametki, 49:3 (1991),  145–146
  22. Finite groups with a modular lattice of centralizers

    Algebra Logika, 26:6 (1987),  653–683
  23. Locally finite groups with small normalizers

    Mat. Zametki, 41:3 (1987),  296–302
  24. Groups of Gaschütz type and groups close to them

    Mat. Zametki, 27:6 (1980),  839–857
  25. Groups that are close to Gaschütz groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 7,  3–9
  26. Groups with $C$-closed noncyclic subgroups

    Sibirsk. Mat. Zh., 20:6 (1979),  1171–1184

  27. Letter to the editors

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 5,  90


© Steklov Math. Inst. of RAS, 2026