RUS  ENG
Full version
PEOPLE

Borodin Oleg Veniaminovich

Publications in Math-Net.Ru

  1. Describing $3$-faces in $3$-polytopes without adjacent triangles

    Sibirsk. Mat. Zh., 66:1 (2025),  20–26
  2. Describing edges incident with minor faces in 3-polytopes without adjacent 3-faces

    Mathematical notes of NEFU, 32:2 (2025),  50–55
  3. Describing edges in normal plane maps having no adjacent $3$-faces

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  495–500
  4. Light $3$-paths in $3$-polytopes without adjacent triangles

    Sibirsk. Mat. Zh., 65:2 (2024),  249–257
  5. Combinatorial structure of faces in triangulations on surfaces

    Sibirsk. Mat. Zh., 63:4 (2022),  796–804
  6. Tight description of faces in torus triangulations with minimum degree 5

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1475–1481
  7. All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  456–463
  8. A tight description of $3$-polytopes by their major $3$-paths

    Sibirsk. Mat. Zh., 62:3 (2021),  498–508
  9. Heights of minor faces in 3-polytopes

    Sibirsk. Mat. Zh., 62:2 (2021),  250–268
  10. Soft 3-stars in sparse plane graphs

    Sib. Èlektron. Mat. Izv., 17 (2020),  1863–1868
  11. An extension of Franklin's Theorem

    Sib. Èlektron. Mat. Izv., 17 (2020),  1516–1521
  12. All tight descriptions of $3$-paths in plane graphs with girth at least $8$

    Sib. Èlektron. Mat. Izv., 17 (2020),  496–501
  13. All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1334–1344
  14. Low faces of restricted degree in $3$-polytopes

    Sibirsk. Mat. Zh., 60:3 (2019),  527–536
  15. Light minor $5$-stars in $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 60:2 (2019),  351–359
  16. Light 3-stars in sparse plane graphs

    Sib. Èlektron. Mat. Izv., 15 (2018),  1344–1352
  17. All tight descriptions of $3$-paths in plane graphs with girth at least $9$

    Sib. Èlektron. Mat. Izv., 15 (2018),  1174–1181
  18. Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 59:1 (2018),  56–64
  19. Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices

    Sibirsk. Mat. Zh., 58:4 (2017),  771–778
  20. The height of faces of $3$-polytopes

    Sibirsk. Mat. Zh., 58:1 (2017),  48–55
  21. Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$

    Sib. Èlektron. Mat. Izv., 13 (2016),  584–591
  22. Describing $4$-paths in $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 57:5 (2016),  981–987
  23. Light and low $5$-stars in normal plane maps with minimum degree $5$

    Sibirsk. Mat. Zh., 57:3 (2016),  596–602
  24. Heights of minor faces in triangle-free $3$-polytopes

    Sibirsk. Mat. Zh., 56:5 (2015),  982–987
  25. Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$

    Sibirsk. Mat. Zh., 56:4 (2015),  775–789
  26. The vertex-face weight of edges in $3$-polytopes

    Sibirsk. Mat. Zh., 56:2 (2015),  338–350
  27. The weight of edge in 3-polytopes

    Sib. Èlektron. Mat. Izv., 11 (2014),  457–463
  28. Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$

    Sibirsk. Mat. Zh., 55:1 (2014),  17–24
  29. 2-distance 4-coloring of planar subcubic graphs

    Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28
  30. Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$

    Sibirsk. Mat. Zh., 52:5 (2011),  1004–1010
  31. Acyclic 5-choosability of planar graphs without 4-cycles

    Sibirsk. Mat. Zh., 52:3 (2011),  522–541
  32. Injective $(\Delta+1)$-coloring of planar graphs with girth 6

    Sibirsk. Mat. Zh., 52:1 (2011),  30–38
  33. Acyclic 4-colorability of planar graphs without 4- and 5-cycles

    Diskretn. Anal. Issled. Oper., 17:2 (2010),  20–38
  34. Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$

    Sib. Èlektron. Mat. Izv., 7 (2010),  275–283
  35. Acyclic 4-coloring of plane graphs without cycles of length 4 and 6

    Diskretn. Anal. Issled. Oper., 16:6 (2009),  3–11
  36. Acyclic 3-choosability of plane graphs without cycles of length from 4 to 12

    Diskretn. Anal. Issled. Oper., 16:5 (2009),  26–33
  37. Near-proper vertex 2-colorings of sparse graphs

    Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20
  38. Partitioning sparse plane graphs into two induced subgraphs of small degree

    Sib. Èlektron. Mat. Izv., 6 (2009),  13–16
  39. List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$

    Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224
  40. Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников

    Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16
  41. Circular $(5,2)$-coloring of sparse graphs

    Sib. Èlektron. Mat. Izv., 5 (2008),  417–426
  42. List $2$-arboricity of planar graphs with no triangles at distance less than two

    Sib. Èlektron. Mat. Izv., 5 (2008),  211–214
  43. Planar graphs without triangular $4$-cycles are $3$-choosable

    Sib. Èlektron. Mat. Izv., 5 (2008),  75–79
  44. Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30
  45. Minimax degrees of quasiplane graphs without $4$-faces

    Sib. Èlektron. Mat. Izv., 4 (2007),  435–439
  46. Decomposing a planar graph into a forest and a subgraph of restricted maximum degree

    Sib. Èlektron. Mat. Izv., 4 (2007),  296–299
  47. Oriented 5-coloring of sparse plane graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32
  48. Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$

    Sib. Èlektron. Mat. Izv., 3 (2006),  441–450
  49. Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable

    Sib. Èlektron. Mat. Izv., 3 (2006),  428–440
  50. List $(p,q)$-coloring of sparse plane graphs

    Sib. Èlektron. Mat. Izv., 3 (2006),  355–361
  51. Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6

    Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47
  52. An oriented colouring of planar graphs with girth at least $4$

    Sib. Èlektron. Mat. Izv., 2 (2005),  239–249
  53. An oriented $7$-colouring of planar graphs with girth at least $7$

    Sib. Èlektron. Mat. Izv., 2 (2005),  222–229
  54. A sufficient condition for the 3-colorability of plane graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004),  13–29
  55. Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable

    Sib. Èlektron. Mat. Izv., 1 (2004),  129–141
  56. Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles

    Sib. Èlektron. Mat. Izv., 1 (2004),  117–128
  57. $2$-distance coloring of sparse planar graphs

    Sib. Èlektron. Mat. Izv., 1 (2004),  76–90
  58. Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles

    Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003),  3–11
  59. Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra

    Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002),  29–39
  60. On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles

    Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002),  3–26
  61. Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces

    Mat. Zametki, 72:1 (2002),  35–37
  62. On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph

    Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  34–53
  63. Minimal degrees and chromatic numbers of squares of planar graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  9–33
  64. The structure of plane triangulations in terms of clusters and stars

    Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001),  15–39
  65. Distributive colorings of plane triangulations of minimum degree five

    Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001),  3–16
  66. On a structural property of plane graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000),  5–19
  67. Acyclic $k$-strong coloring of maps on surfaces

    Mat. Zametki, 67:1 (2000),  36–45
  68. Acyclic coloring of 1-planar graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999),  20–35
  69. The height of small faces in planar normal maps

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998),  6–17
  70. Weight of faces in plane maps

    Mat. Zametki, 64:5 (1998),  648–657
  71. Colorings and topological representations of graphs

    Diskretn. Anal. Issled. Oper., 3:4 (1996),  3–27
  72. Neighborhoods of edges in normal cards

    Diskretn. Anal. Issled. Oper., 2:3 (1995),  3–9
  73. Structure of neighborhoods of edges in planar graphs and simultaneous coloring of vertices, edges and faces

    Mat. Zametki, 53:5 (1993),  35–47
  74. Bidegree of graph and degeneracy number

    Mat. Zametki, 53:4 (1993),  13–20
  75. A structural theorem on planar graphs and its application to coloring

    Diskr. Mat., 4:1 (1992),  60–65
  76. Minimal weight of face in plane triangulations without 4-vertices

    Mat. Zametki, 51:1 (1992),  16–19
  77. Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps

    Diskr. Mat., 3:4 (1991),  24–27
  78. On a characterization of chromatically rigid polynomials

    Sibirsk. Mat. Zh., 32:1 (1991),  22–27
  79. Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs

    Mat. Zametki, 48:6 (1990),  22–28
  80. Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs

    Mat. Zametki, 46:5 (1989),  9–12
  81. A proof of Grünbaum's conjecture on the acyclic $5$-colorability of planar graphs

    Dokl. Akad. Nauk SSSR, 231:1 (1976),  18–20

  82. In memory of Dmitry Germanovich Fon-Der-Flaass

    Sib. Èlektron. Mat. Izv., 7 (2010),  1–4


© Steklov Math. Inst. of RAS, 2026