RUS  ENG
Full version
PEOPLE

Shabalin Pavel Leonidovich

Publications in Math-Net.Ru

  1. The Hilbert boundary value problem for generalized analytic functions with a supersingular line

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 8,  92–98
  2. The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:1 (2024),  111–122
  3. The Riemann problem on a ray for generalized analytic functions with a singular line

    Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023),  58–69
  4. The Riemann problem in a half-plane for generalized analytic functions with a supersingular point on the contour of the boundary condition

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 11,  98–103
  5. The Riemann problem in a half-plane for generalized analytic functions with a singular line

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3,  78–89
  6. The Riemann problem with a condition on the real axis for generalized analytic functions with a singular curve

    Sibirsk. Mat. Zh., 64:2 (2023),  449–462
  7. Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1,  64–80
  8. Hilbert boundary-value problem with different two-sided power-law vorticity at infinity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3,  38–53
  9. Inhomogeneous Hilbert Boundary-Value Problem with a Finite Number of Second-Type Singularity Points

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 153 (2018),  143–150
  10. Solvability homogeneous Riemann–Hilbert boundary value problem with several points of turbulence

    Probl. Anal. Issues Anal., 7(25):special issue (2018),  31–39
  11. On univalent mappings performed by the generalized Christoffel–Schwarz formula

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 143 (2017),  81–86
  12. Conformal mappings of circular domains on finitely-connected non-Smirnov type domains

    Ufimsk. Mat. Zh., 9:1 (2017),  3–17
  13. Investigation Riemann–Hilbert boundary value problem with infinite index on circle

    Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016),  174–180
  14. On solvability of homogeneous Riemann–Hilbert problem with discontinuities of coefficients and two-side curling at infinity of a logarithmic order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 1,  36–48
  15. A homogeneous Hilbert problem with a countable set of discontinuity points of coefficients and a logarithmic singularity of index

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12,  83–88
  16. On solvability of homogeneous Riemann–Hilbert problem with countable set of coefficient discontinuities and two-side curling at infinity of order less than 1/2

    Ufimsk. Mat. Zh., 5:2 (2013),  82–93
  17. A homogeneous Hilbert problem with discontinuous coefficients and two-side curling at infinity of order $1/2\leq\rho<1$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 11,  67–71
  18. The M. A. Lavrentiev inverse problem on mapping of half-plane onto polygon with infinite set of vertices

    Izv. Saratov Univ. Math. Mech. Inform., 10:1 (2010),  23–31
  19. The Hilbert boundary-value problem with a finite index and a countable set of jump discontinuities in coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  36–47
  20. A generalization of the Schwarz–Christoffel formula

    Sib. Zh. Ind. Mat., 13:4 (2010),  109–117
  21. Certain case of the Riemann–Hilbert boundary value problem with peculiarities of coefficients

    Izv. Saratov Univ. Math. Mech. Inform., 9:1 (2009),  58–67
  22. Mapping of a half-plane onto a polygon with infinitely many vertices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 10,  76–80
  23. Однородная задача Гильберта со счётным множеством точек разрыва коэффициентов и её применение к отображению многоугольников

    Matem. Mod. Kraev. Zadachi, 3 (2009),  194–197
  24. The Hilbert problem: The case of infinitely many discontinuity points of coefficients

    Sibirsk. Mat. Zh., 49:4 (2008),  898–915
  25. To the Solution of the Hilbert Problem with Infinite Index

    Mat. Zametki, 73:5 (2003),  724–734
  26. An exterior inverse boundary value problem in a combination of two parameters of Cartesian coordinates and a polar angle

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10,  3–10
  27. The regularizing factor method for solving a homogeneous Hilbert problem with an infinite index

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 4,  76–79
  28. Unique solvability of an inverse mixed boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4,  78–82
  29. An inverse mixed boundary value problem for an infinitely connected domain with a periodic boundary

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 6,  80–83
  30. On the continuability from the boundary into the domain of the Hölder condition for harmonic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 10,  82–84
  31. Some characteristics of univalent solutions of inverse boundary value problems

    Trudy Sem. Kraev. Zadacham, 21 (1984),  210–216
  32. Conditions for univalence with a quasiconformal extension and its application

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 2,  6–14
  33. Conditions for univalence in star-shaped and convex domains

    Trudy Sem. Kraev. Zadacham, 20 (1983),  35–42
  34. Conditions for univalence of functions regular in a ring

    Trudy Sem. Kraev. Zadacham, 19 (1983),  184–192
  35. On the improvement of the separating constants in the criterion of the univalence of the solution of an inverse boundary value problem

    Trudy Sem. Kraev. Zadacham, 17 (1980),  167–179
  36. Classes of univalence and domains of Smirnov type

    Trudy Sem. Kraev. Zadacham, 16 (1979),  218–226
  37. Problems of S. N. Andrianov

    Trudy Sem. Kraev. Zadacham, 14 (1977),  28–35
  38. The univalence of the general solution of an interior inverse boundary value problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  92–95

  39. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100


© Steklov Math. Inst. of RAS, 2026