RUS  ENG
Full version
PEOPLE

Ushakov Vladimir Nikolaevich

Publications in Math-Net.Ru

  1. On the area of the $\varepsilon$-layer of a weakly convex figure

    Trudy Inst. Mat. i Mekh. UrO RAN, 31:2 (2025),  280–293
  2. Construction of reachability sets for nonlinear control systems by grid algorithm with an apriori reduction procedure

    Chelyab. Fiz.-Mat. Zh., 9:3 (2024),  364–374
  3. Concerning one supplement to unification method of N.N. Krasovskii in differential games theory

    Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024),  65–71
  4. Convergence of conflict-controlled systems over a finite period of time

    Izv. IMI UdGU, 64 (2024),  70–96
  5. Minimax differential game with a fixed end moment

    Mat. Teor. Igr Pril., 16:3 (2024),  77–112
  6. On the relation between $\alpha$-sets and weakly convex sets

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:4 (2024),  276–285
  7. On the construction of solutions to a game problem with a fixed end time

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  255–273
  8. Some problems of target approach for nonlinear control system at a fixed time moment

    Izv. IMI UdGU, 62 (2023),  125–155
  9. Game Problem of Target Approach for Nonlinear Control System

    Mat. Teor. Igr Pril., 15:2 (2023),  122–139
  10. Unification in the game problem of convergence and the property of stability

    Chelyab. Fiz.-Mat. Zh., 7:1 (2022),  54–79
  11. On the approach problem for a control system on a finite time interval

    Izv. IMI UdGU, 60 (2022),  111–154
  12. On the parametric dependence of the volume of integral funnels and their approximations

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022),  447–462
  13. Reachable sets and integral funnels of differential inclusions depending on a parameter

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  49–53
  14. On the construction of resolving control in the problem of getting close at a fixed time moment

    Izv. IMI UdGU, 58 (2021),  73–93
  15. Iterative algorithms for minimizing the Hausdorff distance between convex polyhedrons

    Izv. IMI UdGU, 57 (2021),  142–155
  16. Two game-theoretic problems of approach

    Mat. Sb., 212:9 (2021),  40–74
  17. On a Problem of Impulse Control under Disturbance and Possible Breakdown

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  249–263
  18. On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems

    Trudy Mat. Inst. Steklova, 315 (2021),  261–270
  19. Control system depending on a parameter

    Ural Math. J., 7:1 (2021),  120–159
  20. Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons

    Chelyab. Fiz.-Mat. Zh., 5:2 (2020),  218–232
  21. Numerical methods for constructing suboptimal packings of nonconvex domains with curved boundary

    Diskretn. Anal. Issled. Oper., 27:4 (2020),  58–79
  22. Estimation of the growth of the degree of nonconvexity of reachable sets in terms of $\alpha$-sets

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  100–106
  23. On targeting an integral funnel of control system at a target set in the phase space

    Izv. IMI UdGU, 56 (2020),  79–101
  24. On the guaranteed estimates of the area of convex subsets of compacts on a plane

    Mat. Teor. Igr Pril., 12:4 (2020),  112–126
  25. On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  239–255
  26. On recovering of unknown constant parameter by several test controls

    Ufimsk. Mat. Zh., 12:4 (2020),  101–116
  27. On estimation of Hausdorff deviation of convex polygons in $ \mathbb{R}^2$ from their differences with disks

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  585–603
  28. On one control problem with disturbance and vectograms depending linearly on given sets

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:3 (2020),  429–443
  29. On one addition to evaluation by L. S. Pontryagin of the geometric difference of sets in a plane

    Izv. IMI UdGU, 54 (2019),  63–73
  30. An approach problem for a control system and a compact set in the phase space in the presence of phase constraints

    Mat. Sb., 210:8 (2019),  29–66
  31. An Addition to the Definition of a Stable Bridge and an Approximating System of Sets in Differential Games

    Trudy Mat. Inst. Steklova, 304 (2019),  285–297
  32. An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  223–235
  33. Alpha-sets in finite-dimensional Euclidean spaces and their applications in control theory

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018),  261–272
  34. On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018),  489–512
  35. An approach problem for a control system with an unknown parameter

    Mat. Sb., 208:9 (2017),  56–99
  36. Iterative methods for minimization of the Hausdorff distance between movable polygons

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017),  86–97
  37. Algorithms of optimal packing construction in ellipse

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017),  67–79
  38. Theorems on the separability of $\alpha$-sets in Euclidean space

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  277–291
  39. On the solution of control problems with fixed terminal time

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016),  543–564
  40. Algorithms of optimal set covering on the planar $\mathbb{R}^2 $

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:2 (2016),  258–270
  41. $\alpha$-sets in finite dimensional Euclidean spaces and their properties

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016),  95–120
  42. To solution of control problems of nonlinear systems on a finite time interval

    Izv. IMI UdGU, 2015, no. 2(46),  202–215
  43. $\alpha$-systems of differential inclusions and their unification

    Mat. Teor. Igr Pril., 7:2 (2015),  85–116
  44. Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  276–288
  45. On solving approach problems for control systems

    Trudy Mat. Inst. Steklova, 291 (2015),  276–291
  46. Construction of solutions in an approach problem of a stationary control system

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  277–286
  47. Optimization of the Hausdorff distance between sets in Euclidean space

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  291–308
  48. On estimation of the stability defect of the sets with piecewise smooth border

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  250–266
  49. A method for constructing a resolving control in an approach problem based on attraction to the solvability set

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  275–284
  50. The invariance of sets in the construction of solutions to a problem of approach at a fixed time

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  264–283
  51. Geometry of singular curves for one class of velocity

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3,  157–167
  52. Algorithms of the best approximations of the flat sets by the union of circles

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4,  88–99
  53. A variant of a metric for unbounded convex sets

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013),  40–49
  54. On the solutions construction of the problem of convergence to a fixed point in time

    Bulletin of Irkutsk State University. Series Mathematics, 5:4 (2012),  95–115
  55. Stability defect of maximal stable bridge in approaching game problem with closed target

    Izv. IMI UdGU, 2012, no. 1(39),  140
  56. Problems of dynamics of systems with phase constraints

    Izv. IMI UdGU, 2012, no. 1(39),  138–139
  57. On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares

    Mat. Zametki, 91:5 (2012),  711–719
  58. On the question of the weak invariance of sets with respect to a differential inclusion generated by a control system

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  271–285
  59. Differential games with fixed terminal time and estimation of the instability degree of sets in these games

    Trudy Mat. Inst. Steklova, 277 (2012),  275–287
  60. Estimate of the stability defect for a positional absorption set subjected to discriminant transformations

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  209–224
  61. Approximations of attainability sets and of integral funnels of differential inclusions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4,  23–39
  62. Invariance defect of sets with respect to differential inclusion

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2,  98–111
  63. Function defect in differential games with terminal pay

    Mat. Teor. Igr Pril., 2:2 (2010),  99–128
  64. On the question of the stability defect of sets in an approach game problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  199–222
  65. On a supplement to the stability property in differential games

    Trudy Mat. Inst. Steklova, 271 (2010),  299–318
  66. Defect of stability in game-pursuit problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  87–103
  67. On solving a pursuit game problem with fixed termination time

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  251–261
  68. On the coincidence of maximal stable bridges in two approach game problems for stationary control systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  219–240
  69. Construction of a minimax solution for an eikonal-type equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  182–191
  70. Coincidence Criteria for Maximal Stable Bridges in Two Game Problems of Approach

    Trudy Mat. Inst. Steklova, 262 (2008),  253–271
  71. Using the stability defect for the construction of control in the differential game

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  155–162
  72. Two algorithms for approximate construction of the set of positional absorption in the game problem of pursuit

    Avtomat. i Telemekh., 2007, no. 11,  178–194
  73. On the property of stability in differential games

    Izv. IMI UdGU, 2006, no. 3(37),  155–156
  74. The stability defect of sets in game control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  178–194
  75. On the problem of computing of a control that leads a motion of a controlled system to a neighborhood of a given point on a reachable set

    Vestn. Udmurtsk. Univ. Mat., 2006, no. 1,  111–126
  76. Construction of solutions in certain differential games with phase constraints

    Mat. Sb., 196:4 (2005),  51–78
  77. Approximate computation of the invariance kernel of differential inclusions

    Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005),  592–602
  78. Stable bridges in differential games in a finite time interval

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  155–177
  79. О выделении ядра инвариантности для дифференциальных включений

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8,  167–180
  80. A discrete method for constructing an approximate viability kernel of a differential inclusion

    Zh. Vychisl. Mat. Mat. Fiz., 41:6 (2001),  895–908
  81. The construction of differential inclusions with prescribed properties

    Differ. Uravn., 36:4 (2000),  438–445
  82. Constructions of the differential game theory for solving the Hamilton–Jacobi equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:2 (2000),  320–336
  83. On infinitesimal constructions in the theory of generalized dynamical systems. II

    Differ. Uravn., 34:4 (1998),  457–464
  84. An inverse problem in the theory of differential inclusions

    Differ. Uravn., 34:4 (1998),  451–456
  85. On infinitesimal constructions in the theory of generalized dynamical systems. I

    Differ. Uravn., 34:2 (1998),  157–165
  86. The construction of approximate integral funnels of differential inclusions

    Zh. Vychisl. Mat. Mat. Fiz., 34:7 (1994),  965–977
  87. On construction of positional absorption set in conflict control problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 1 (1992),  160–177
  88. On the existence of the cost of differential games with integral constraints

    Differ. Uravn., 27:6 (1991),  931–941
  89. Strongly and weakly invariant sets with respect to a differential inclusion, their derivatives and application to control problems

    Differ. Uravn., 26:11 (1990),  1888–1894
  90. Strongly and weakly invariant sets with respect to a differential inclusion

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  794–796
  91. A minimax differential game

    Dokl. Akad. Nauk SSSR, 206:2 (1972),  277–280

  92. Nikolai Nikandrovich Petrov. To anniversary

    Izv. IMI UdGU, 62 (2023),  3–9
  93. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  94. In memory of Evgenii Leonidovich Tonkov (27.06.1940–28.09.2014)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  146–154
  95. Petrov Nikolai Nikandrovich (on his sixties birthday)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4,  175–180
  96. In memory of Nikolai Nikolaevich Krasovskii (07.09.1924 – 04.04.2012)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 3,  157–158
  97. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  98. APST'2009

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  281–284
  99. Aleksandr Borisovich Kurzhanskii (on the occasion of his 70th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  5–9
  100. Andrei Izmailovich Subbotin (Memorial issue)

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:1 (2000),  3–26


© Steklov Math. Inst. of RAS, 2026