RUS  ENG
Full version
PEOPLE

Dybin Vladimir Borisovich

Publications in Math-Net.Ru

  1. The Wiener–Hopf equation and Blaschke products

    Mat. Sb., 181:6 (1990),  779–803
  2. The Wiener–Hopf equation with a vanishing symbol, and the limiting absorption principle

    Dokl. Akad. Nauk SSSR, 300:6 (1988),  1305–1308
  3. One-dimensional singular integral equations with coefficients vanishing on countable sets

    Izv. Akad. Nauk SSSR Ser. Mat., 51:5 (1987),  936–961
  4. Correct formulation of the Riemann problem in the case of an infinite number of zeros in its coefficient

    Dokl. Akad. Nauk SSSR, 280:4 (1985),  785–788
  5. A Wiener-Hopf integral-difference equation in the exceptional case

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 5,  64–67
  6. The Riemann boundary value problem with discontinuities of almost periodic type in its coefficient

    Dokl. Akad. Nauk SSSR, 237:1 (1977),  21–24
  7. The Riemann boundary value problem with a quasiperiodic degeneracy of the coefficients

    Dokl. Akad. Nauk SSSR, 212:5 (1973),  1046–1049
  8. Normalization of the Wiener–Hopf operator

    Dokl. Akad. Nauk SSSR, 191:4 (1970),  759–762
  9. An exceptional case for a dual integral equation of convolution type

    Dokl. Akad. Nauk SSSR, 176:2 (1967),  251–254
  10. Application of the normalization method to a class of infinite systems of linear algebraic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10,  39–49
  11. Integral equations of the convolution type in a class of generalized functions

    Sibirsk. Mat. Zh., 7:3 (1966),  531–545
  12. An exceptional case of integral equations of convolution type in the class of generalized functions

    Dokl. Akad. Nauk SSSR, 161:4 (1965),  753–756


© Steklov Math. Inst. of RAS, 2026