RUS  ENG
Full version
PEOPLE

Garaev Moubariz Zafar ogly

Publications in Math-Net.Ru

  1. On distribution of elements of subgroups in arithmetic progressions modulo a prime

    Trudy Mat. Inst. Steklova, 303 (2018),  59–66
  2. On the smallest simultaneous power nonresidue modulo a prime

    Forum Math., 29:2 (2017),  347–355
  3. Sumsets of reciprocals in prime fields and multilinear Kloosterman sums

    Izv. RAN. Ser. Mat., 78:4 (2014),  19–72
  4. Multiplicative congruences with variables from short intervals

    J. Analyse Math., 124:1 (2014),  117–143
  5. Multiplicative decomposition of arithmetic progressions in prime fields

    J. Number Theory, 145 (2014),  540–553
  6. On congruences with products of variables from short intervals and applications

    Trudy Mat. Inst. Steklova, 280 (2013),  67–96
  7. On the hidden shifted power problem

    SIAM J. Comput., 41:6 (2012),  1524–1557
  8. Asymptotics for the sum of powers of distances between power residues modulo a prime

    Trudy Mat. Inst. Steklova, 276 (2012),  83–95
  9. Estimation of Kloosterman Sums with Primes and Its Application

    Mat. Zametki, 88:3 (2010),  365–373
  10. Sums and products of sets and estimates of rational trigonometric sums in fields of prime order

    Uspekhi Mat. Nauk, 65:4(394) (2010),  5–66
  11. Waring's problem with the Ramanujan $\tau$-function

    Izv. RAN. Ser. Mat., 72:1 (2008),  39–50
  12. On a Series with Simple Zeros of $\zeta(s)$

    Mat. Zametki, 73:4 (2003),  627–629
  13. On the diophantine equation $\bigl(\frac{x}{y}\bigr)^u+\bigl(\frac{y}{z}\bigr)^v+\bigl(\frac{z}{x}\bigr)^w=4t$

    Fundam. Prikl. Mat., 7:1 (2001),  267–270
  14. On the Diophantine equation $(x+y+z)^3=nxyz$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 2,  66–67
  15. On Lower Bounds for the $L_1$-Norm of Exponential Sums

    Mat. Zametki, 68:6 (2000),  842–850
  16. On the Gauss trigonometric sum

    Mat. Zametki, 68:2 (2000),  173–178
  17. On arguments of Gauss sums

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 6,  52–55
  18. A note on the system of Pell's equations

    Fundam. Prikl. Mat., 5:3 (1999),  927–930
  19. Concerning the Sierpinski–Schinzel system of Diophantine equations

    Mat. Zametki, 66:2 (1999),  181–187
  20. On oscillating third-order differential equations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4,  68–70
  21. Diophantine equations of the third degree

    Trudy Mat. Inst. Steklova, 218 (1997),  99–108
  22. On the Diophantine equation $x^3+y^3+z^3=nxyz$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2,  57–58
  23. On asymptotic behavior of solutions of linear high order differential equations

    Fundam. Prikl. Mat., 1:3 (1995),  801–804


© Steklov Math. Inst. of RAS, 2026