|
|
Publications in Math-Net.Ru
-
On distribution of elements of subgroups in arithmetic progressions modulo a prime
Trudy Mat. Inst. Steklova, 303 (2018), 59–66
-
On the smallest simultaneous power nonresidue modulo a prime
Forum Math., 29:2 (2017), 347–355
-
Sumsets of reciprocals in prime fields and multilinear Kloosterman sums
Izv. RAN. Ser. Mat., 78:4 (2014), 19–72
-
Multiplicative congruences with variables from short intervals
J. Analyse Math., 124:1 (2014), 117–143
-
Multiplicative decomposition of arithmetic progressions in prime fields
J. Number Theory, 145 (2014), 540–553
-
On congruences with products of variables from short intervals and applications
Trudy Mat. Inst. Steklova, 280 (2013), 67–96
-
On the hidden shifted power problem
SIAM J. Comput., 41:6 (2012), 1524–1557
-
Asymptotics for the sum of powers of distances between power residues modulo a prime
Trudy Mat. Inst. Steklova, 276 (2012), 83–95
-
Estimation of Kloosterman Sums with Primes and Its Application
Mat. Zametki, 88:3 (2010), 365–373
-
Sums and products of sets and estimates of rational trigonometric sums in fields of prime order
Uspekhi Mat. Nauk, 65:4(394) (2010), 5–66
-
Waring's problem with the Ramanujan $\tau$-function
Izv. RAN. Ser. Mat., 72:1 (2008), 39–50
-
On a Series with Simple Zeros of $\zeta(s)$
Mat. Zametki, 73:4 (2003), 627–629
-
On the diophantine equation $\bigl(\frac{x}{y}\bigr)^u+\bigl(\frac{y}{z}\bigr)^v+\bigl(\frac{z}{x}\bigr)^w=4t$
Fundam. Prikl. Mat., 7:1 (2001), 267–270
-
On the Diophantine equation $(x+y+z)^3=nxyz$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 2, 66–67
-
On Lower Bounds for the $L_1$-Norm of Exponential Sums
Mat. Zametki, 68:6 (2000), 842–850
-
On the Gauss trigonometric sum
Mat. Zametki, 68:2 (2000), 173–178
-
On arguments of Gauss sums
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 6, 52–55
-
A note on the system of Pell's equations
Fundam. Prikl. Mat., 5:3 (1999), 927–930
-
Concerning the Sierpinski–Schinzel system of Diophantine equations
Mat. Zametki, 66:2 (1999), 181–187
-
On oscillating third-order differential equations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 4, 68–70
-
Diophantine equations of the third degree
Trudy Mat. Inst. Steklova, 218 (1997), 99–108
-
On the Diophantine equation $x^3+y^3+z^3=nxyz$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2, 57–58
-
On asymptotic behavior of solutions of linear high order differential equations
Fundam. Prikl. Mat., 1:3 (1995), 801–804
© , 2026