RUS  ENG
Full version
PEOPLE

Rasulov Tulkin Husenovich

Publications in Math-Net.Ru

  1. Spectral estimates for the bounds of an operator matrix of order three

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 6,  88–93
  2. Investigation of the spectrum of an operator matrix of order three in one-dimensional case

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 5,  84–90
  3. Asymptotic expansion of Fredholm determinant associated to a family of Friedrichs models arising in quantum mechanics

    Nanosystems: Physics, Chemistry, Mathematics, 16:5 (2025),  586–592
  4. Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  77–89
  5. Spectral relations for a matrix model in fermionic Fock space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  91–96
  6. On the number of components of the essential spectrum of one $2\times2$ operator matrix

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  85–90
  7. Main properties of the Faddeev equation for $2 \times 2$ operator matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  53–58
  8. Non-negative matrices and their structured singular values

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  36–45
  9. Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9,  3–19
  10. Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7,  3–12
  11. The first Schur complement for a lattice spin-boson model with at most two photons

    Nanosystems: Physics, Chemistry, Mathematics, 14:3 (2023),  304–311
  12. Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation

    Nanosystems: Physics, Chemistry, Mathematics, 14:2 (2023),  151–157
  13. Description of the spectrum of one fourth-order operator matrix

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023),  427–445
  14. Analysis of the spectrum of a $2\times 2$ operator matrix. Discrete spectrum asymptotics

    Nanosystems: Physics, Chemistry, Mathematics, 11:2 (2020),  138–144
  15. Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum

    TMF, 205:3 (2020),  368–390
  16. Threshold analysis for a family of $2\times2$ operator matrices

    Nanosystems: Physics, Chemistry, Mathematics, 10:6 (2019),  616–622
  17. Analytic description of the essential spectrum of a family of $3\times 3$ operator matrices

    Nanosystems: Physics, Chemistry, Mathematics, 10:5 (2019),  511–519
  18. Branches of the essential spectrum of the lattice spin-boson model with at most two photons

    TMF, 186:2 (2016),  293–310
  19. Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice

    Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015),  280–293
  20. On the spectrum of a three-particle model operator on a lattice with non-local potentials

    Sib. Èlektron. Mat. Izv., 12 (2015),  168–184
  21. An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix

    Sibirsk. Mat. Zh., 56:4 (2015),  878–895
  22. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix

    Eurasian Math. J., 5:2 (2014),  60–77
  23. The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1,  61–70
  24. On the number of eigenvalues of the family of operator matrices

    Nanosystems: Physics, Chemistry, Mathematics, 5:5 (2014),  619–625
  25. Essential and discrete spectrum of a three-particle lattice Hamiltonian with non-local potentials

    Nanosystems: Physics, Chemistry, Mathematics, 5:3 (2014),  327–342
  26. Spectrum and resolvent of a block operator matrix

    Sib. Èlektron. Mat. Izv., 11 (2014),  334–344
  27. Investigations of the Numerical Range of a Operator Matrix

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  50–63
  28. Structure of the essential spectrum of a model operator associated to a system of three particles on a lattice

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012),  34–43
  29. On the number of eigenvalues of a matrix operator

    Sibirsk. Mat. Zh., 52:2 (2011),  400–415
  30. Essential spectrum of a model operator associated with a three-particle system on a lattice

    TMF, 166:1 (2011),  95–109
  31. On the essential spectrum of a model operator associated with the system of three particles on a lattice

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  42–51
  32. Some spectral properties of a generalized Friedrichs model

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  181–188
  33. The Faddeev equation and location of the essential spectrum of a three-particle model operator

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  170–180
  34. Study of the essential spectrum of a matrix operator

    TMF, 164:1 (2010),  62–77
  35. Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice

    TMF, 163:1 (2010),  34–44
  36. Investigation of the spectrum of a model operator in a Fock space

    TMF, 161:2 (2009),  164–175
  37. The Faddeev equation and the location of the essential spectrum of a model operator for several particles

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 12,  59–69
  38. On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian

    Mat. Zametki, 83:1 (2008),  86–94
  39. Discrete spectrum of a model operator in Fock space

    TMF, 152:3 (2007),  518–527
  40. Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum

    Funktsional. Anal. i Prilozhen., 37:1 (2003),  81–84
  41. A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators

    Mat. Zametki, 73:4 (2003),  556–564


© Steklov Math. Inst. of RAS, 2026