|
|
Publications in Math-Net.Ru
-
On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 3, 28–35
-
Representation of a Multiple Integral of Special Form by a Series
Mat. Zametki, 93:1 (2013), 96–103
-
Generalization of Levin–Stechkin inequality
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 1, 18–21
-
On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem
Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4, 57–62
-
On Multiple Integrals of Special Form
Mat. Zametki, 82:3 (2007), 401–410
-
Application of the nonlinear dynamics methods to the investigation of stability regions of rarefied gas flows in channels
Mat. Model., 16:6 (2004), 85–87
-
On a Class of Multiple Integrals
Mat. Zametki, 73:3 (2003), 390–401
-
An Asymptotic Series for the Weber–Schafheitlin Integral
Mat. Zametki, 70:5 (2001), 751–757
-
On the distribution of the number of zerocrossings of Wong process for a large time interval
Fundam. Prikl. Mat., 5:3 (1999), 809–816
-
An asymptotic estimate of the integral of the product of two modified Bessel functions and a power function
Mat. Zametki, 61:3 (1997), 456–458
-
Mathematical problems of the theory of local interaction
Dokl. Akad. Nauk SSSR, 285:5 (1985), 1078–1081
-
A simple criterion of the finiteness of moments of the number of zeros of a Gaussian stationary process
Teor. Veroyatnost. i Primenen., 29:3 (1984), 547–549
-
The using of Rice series
Teor. Veroyatnost. i Primenen., 28:4 (1983), 679–690
-
Convergence of the Longuet-Higgins series for Gaussian stationary Markov process of the first order
Teor. Veroyatnost. i Primenen., 26:1 (1981), 101–120
-
Markov and reciprocal stationary Gaussian processes of second order
Teor. Veroyatnost. i Primenen., 24:4 (1979), 847–853
-
On conditions of the local nondeterminism of differentiable Gaussian stationary processes
Teor. Veroyatnost. i Primenen., 22:4 (1977), 851–856
-
Conditions for moments of the number of zeroes of Gaussian stationary processes to be finite
Teor. Veroyatnost. i Primenen., 22:3 (1977), 631–641
-
Convergence of Rice and Longuet-Higgins series for a Wong process
Teor. Veroyatnost. i Primenen., 21:4 (1976), 885–888
-
A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite
Teor. Veroyatnost. i Primenen., 19:3 (1974), 596–603
-
A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite
Teor. Veroyatnost. i Primenen., 18:3 (1973), 481–490
-
On the finiteness of the moments of the number of zeros of a differentiable Gaussian stationary process
Dokl. Akad. Nauk SSSR, 200:1 (1971), 32–34
-
An asymptotic estimate of the probability for a Gaussian stochastic process to remain under the straight line $kt+a$
Teor. Veroyatnost. i Primenen., 14:2 (1969), 363–369
© , 2026