RUS  ENG
Full version
PEOPLE

Miroshin Roman Nickolaevich

Publications in Math-Net.Ru

  1. On evolution of the integral of the product of two real functions with Levin–Stechkin type of inequality

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 3,  28–35
  2. Representation of a Multiple Integral of Special Form by a Series

    Mat. Zametki, 93:1 (2013),  96–103
  3. Generalization of Levin–Stechkin inequality

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 1,  18–21
  4. On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 4,  57–62
  5. On Multiple Integrals of Special Form

    Mat. Zametki, 82:3 (2007),  401–410
  6. Application of the nonlinear dynamics methods to the investigation of stability regions of rarefied gas flows in channels

    Mat. Model., 16:6 (2004),  85–87
  7. On a Class of Multiple Integrals

    Mat. Zametki, 73:3 (2003),  390–401
  8. An Asymptotic Series for the Weber–Schafheitlin Integral

    Mat. Zametki, 70:5 (2001),  751–757
  9. On the distribution of the number of zerocrossings of Wong process for a large time interval

    Fundam. Prikl. Mat., 5:3 (1999),  809–816
  10. An asymptotic estimate of the integral of the product of two modified Bessel functions and a power function

    Mat. Zametki, 61:3 (1997),  456–458
  11. Mathematical problems of the theory of local interaction

    Dokl. Akad. Nauk SSSR, 285:5 (1985),  1078–1081
  12. A simple criterion of the finiteness of moments of the number of zeros of a Gaussian stationary process

    Teor. Veroyatnost. i Primenen., 29:3 (1984),  547–549
  13. The using of Rice series

    Teor. Veroyatnost. i Primenen., 28:4 (1983),  679–690
  14. Convergence of the Longuet-Higgins series for Gaussian stationary Markov process of the first order

    Teor. Veroyatnost. i Primenen., 26:1 (1981),  101–120
  15. Markov and reciprocal stationary Gaussian processes of second order

    Teor. Veroyatnost. i Primenen., 24:4 (1979),  847–853
  16. On conditions of the local nondeterminism of differentiable Gaussian stationary processes

    Teor. Veroyatnost. i Primenen., 22:4 (1977),  851–856
  17. Conditions for moments of the number of zeroes of Gaussian stationary processes to be finite

    Teor. Veroyatnost. i Primenen., 22:3 (1977),  631–641
  18. Convergence of Rice and Longuet-Higgins series for a Wong process

    Teor. Veroyatnost. i Primenen., 21:4 (1976),  885–888
  19. A necessary condition for moments of the number of zeros of a differentiable Guassian stationary process to le inite

    Teor. Veroyatnost. i Primenen., 19:3 (1974),  596–603
  20. A sufficient condition for the number of zeros of a differentiable Gaussian stationary process to be finite

    Teor. Veroyatnost. i Primenen., 18:3 (1973),  481–490
  21. On the finiteness of the moments of the number of zeros of a differentiable Gaussian stationary process

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  32–34
  22. An asymptotic estimate of the probability for a Gaussian stochastic process to remain under the straight line $kt+a$

    Teor. Veroyatnost. i Primenen., 14:2 (1969),  363–369


© Steklov Math. Inst. of RAS, 2026