RUS  ENG
Full version
PEOPLE

Kuzmin Mikhail Valer'evich

Publications in Math-Net.Ru

  1. Применение потенциала Морзе для описания процессов десорбции из двумерных адсорбированных слоев

    Zhurnal Tekhnicheskoi Fiziki, 96:1 (2026),  45–50
  2. NEXAFS-спектроскопия нанопленочной системы О$_2$–Yb–Si(111)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:4 (2026),  47–50
  3. Electronic nature of size effects in O$_2$-Yb-Si(111) film structures

    Fizika Tverdogo Tela, 67:5 (2025),  882–888
  4. Numerical model for studying 3$D$ island films by Auger electron spectroscopy. The Sm–Si(111) system

    Fizika Tverdogo Tela, 67:1 (2025),  180–186
  5. Kinetics of silicide phase formation in the Yb-Si(111) thin-film system

    Zhurnal Tekhnicheskoi Fiziki, 95:4 (2025),  805–811
  6. Structural and phase analysis of Ge(111)$c$(2 $\times$ 8), Si(100)(2 $\times$ 1), and BaO/Si(100) surfaces by means of height histograms in scanning tunneling microscopy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:11 (2025),  26–29
  7. Revisiting the fine structure of 2$p$ spectra from the (100) silicon surface

    Fizika Tverdogo Tela, 66:7 (2024),  1213–1220
  8. Origin of the thermal stability of oxygen molecules on the ytterbium nanofilm surface

    Fizika Tverdogo Tela, 66:5 (2024),  775–780
  9. Electron-stimulated desorption of europium atoms from the surface of a germanium monolayer deposited on tungsten

    Fizika Tverdogo Tela, 66:3 (2024),  408–412
  10. Influence of resolution, escape depth, and defects on the line shape of 2$p$ spectra from the Si(100) surface

    Optics and Spectroscopy, 132:10 (2024),  1031–1037
  11. Study of the inelastic mean free path in ytterbium nanofilms by Auger electron spectroscopy and X-ray photoelectron spectroscopy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:18 (2024),  15–17
  12. Quantitative analysis of film structures with a diffuse interface studied by Auger electron spectroscopy

    Fizika Tverdogo Tela, 65:9 (2023),  1611–1617
  13. Effect of Friedel oscillations on the work function of ytterbium nanofilms

    Fizika Tverdogo Tela, 65:6 (2023),  1082–1086
  14. Reversible $c$ (4 $\times$ 4) $\leftrightarrow$ (1 $\times$ 2) phase transition on the Ba/Ge(100) surface controlled by oxygen adsorption and desorption

    Fizika Tverdogo Tela, 65:4 (2023),  676–686
  15. Effect of an electric double layer on the adsorption and catalytic properties of the ytterbium nanofilm surface

    Zhurnal Tekhnicheskoi Fiziki, 93:6 (2023),  829–835
  16. X-ray photoelectron spectra of oxygen molecules adsorbed on ytterbium nanofilms

    Fizika Tverdogo Tela, 64:8 (2022),  1091–1095
  17. X-ray photoelectron spectroscopy of ytterbium nanofilms with oxygen adsorbed on their surface

    Fizika Tverdogo Tela, 64:7 (2022),  874–879
  18. Thermal properties of CO–Yb-substrate nanostructures

    Zhurnal Tekhnicheskoi Fiziki, 92:5 (2022),  742–746
  19. The effect of contact potential difference on current–voltage characteristics in scanning tunneling spectroscopy

    Zhurnal Tekhnicheskoi Fiziki, 91:11 (2021),  1769–1773
  20. Metal–semiconductor transition induced by adsorbed oxygen molecules in ytterbium nanofilms

    Zhurnal Tekhnicheskoi Fiziki, 91:7 (2021),  1189–1193
  21. Scanning tunneling microscopy of the ytterbium nanofilm surface and layers of oxygen molecules adsorbed on it

    Zhurnal Tekhnicheskoi Fiziki, 90:8 (2020),  1359–1365
  22. Influence of CO admolecules on the electronic state of ytterbium nanofilms grown on silicon substrates

    Zhurnal Tekhnicheskoi Fiziki, 89:7 (2019),  1086–1091
  23. Electrostatic nature of size dependences of adsorption properties of ytterbium nanofilms grown on the surface of silicon: CO–Yb–Si(111)

    Fizika Tverdogo Tela, 60:7 (2018),  1416–1422
  24. Valence transition investigation in the О$_{2}$–Yb–Si(111) system by means of the angle-resolved photoelectron spectroscopy method

    Fizika Tverdogo Tela, 59:10 (2017),  2032–2036
  25. Transfilm passivation of a silicon–ytterbium nanofilms interface with chemisorbed CO and O$_{2}$ molecules

    Fizika Tverdogo Tela, 59:8 (2017),  1612–1618
  26. Mechanism of the Yb$^{2+}$ $\to$ Yb$^{3+}$ valence transition in ytterbium nanofilms upon chemisorption of CO and O$_2$ molecules on their surface

    Fizika Tverdogo Tela, 58:10 (2016),  2054–2058
  27. Influence of “ytterbium nanofilm–silicon Si(111)” interfaces on the valence of ytterbium

    Fizika Tverdogo Tela, 58:9 (2016),  1794–1797
  28. Mechanism of formation of ytterbium disilicide nanofilms on the Si(111) surface

    Fizika Tverdogo Tela, 57:10 (2015),  2056–2060
  29. Valence transition 2+ $\to$ 3+ induced in ytterbium nanofilms by CO and O$_2$ molecules chemisorbed on their surface

    Fizika Tverdogo Tela, 57:9 (2015),  1822–1829
  30. Chemisorption of ammonia molecules on ytterbium nanofilms deposited on silicon Si(111) at room temperature

    Fizika Tverdogo Tela, 56:12 (2014),  2457–2463
  31. Influence of the metal nanofilm-semiconductor interface on surface properties of the nanofilm: The CO–Yb–Si(111) system

    Fizika Tverdogo Tela, 56:7 (2014),  1397–1402
  32. Study of reactive film heterostructures with several interfaces using the thermal desorption spectroscopy

    Zhurnal Tekhnicheskoi Fiziki, 83:6 (2013),  27–32
  33. Study of O$_2$–Yb–Si(111) and CO–Yb–Si(111) nanofilm structures by thermal desorption spectroscopy

    Fizika Tverdogo Tela, 54:10 (2012),  1988–1992
  34. Interaction of ytterbium nanofilms grown on tungsten substrates with oxygen

    Fizika Tverdogo Tela, 54:2 (2012),  378–381
  35. Studies of the nonautonomous state of ytterbium nanofilms induced by chemisorbed oxygen molecules by means of photoelectron spectroscopy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:21 (2012),  22–27
  36. Effect of chemisorbed oxygen and carbon monoxide molecules on the properties of Yb–Si(111) nanofilm structures

    Fizika Tverdogo Tela, 53:6 (2011),  1224–1229
  37. Transformation of auger electron spectra of ytterbium nanofilms under the action of adsorbed carbon monoxide and oxygen molecules

    Fizika Tverdogo Tela, 53:3 (2011),  569–572


© Steklov Math. Inst. of RAS, 2026