RUS  ENG
Full version
PEOPLE

Simonov Boris Vitalevich

Publications in Math-Net.Ru

  1. Improvements of interrelations between moduli of smoothness

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 2,  11–23
  2. Kolyada inequality for partial moduli of smoothness of functions with lacunary Fourier coefficients

    Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022),  447–457
  3. Inequalities refining relationships between mixed moduli of smoothness in $L_1$- and $L_q$-metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 2,  43–61
  4. Kolyada inequality between mixed smoothness moduli of functions in the metrics of $L_p$ and $L_\infty$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 4,  3–15
  5. Properties of sine series in weighted spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 2,  3–17
  6. Trigonometric series with coefficients general monotone with respect to subsequences

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1,  11–30
  7. Refinement of Relations between Mixed Moduli of Smoothness in the Metrics of $L_p$ and $L_\infty$

    Mat. Zametki, 110:3 (2021),  368–385
  8. Refinement of the relations between mixed smoothness moduli in $L_1$ and $L_q$ metrics

    Sibirsk. Mat. Zh., 62:4 (2021),  812–829
  9. Interconnection of partial smoothness moduli in various mixed metrics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 5,  19–31
  10. Transformation of Fourier Series by Means of General Monotone Sequences

    Mat. Zametki, 107:5 (2020),  674–692
  11. Properties of sums of double trigonometric series with multiply monotone coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 5,  8–22
  12. Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics $L_{p_1 p_2}$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 1,  3–17
  13. Nikolskii inequalities for trigonometric polynomes in different metrics

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  49–62
  14. Strengthened Ul'yanov's inequalities for partial moduli of smoothness for functions from spaces with various metrics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 3,  26–38
  15. Constructive characteristics of full modules of smoothness in mixed metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 3,  53–61
  16. Strengthened Ul'yanov's inequality for complete moduli of smoothness of functions from spaces with mixed metrics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 6,  8–20
  17. Estimates for mixed moduli of smoothness in $L_q$ metric via mixed moduli of smoothness in $L_1$ metric

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 2,  12–26
  18. A-integrability of sums of certain trigonometric series

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  50–58
  19. Interrelations between mixed moduli of smoothness in metrics of $L_p$ and $L_\infty$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3,  21–35
  20. Interrelations between full moduli of smoothness in the metrics of $L_1$ è $L_\infty$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1,  16–24
  21. Estimates of quasi-norms for a certain class of double sine series

    Contemporary Mathematics and Its Applications, 96 (2015),  132–142
  22. Existence of best approximation elements in the spaces $L_{\varphi_+\varphi_-}$

    Contemporary Mathematics and Its Applications, 96 (2015),  112–131
  23. Connection between moduli of smoothness in the metrics of $L_p$ and $C$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 1,  8–15
  24. Properties of the mixed modulus of smoothness of positive order in a mixed metric

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 6,  31–40
  25. Properties of mixed moduli of smoothness of functions with lacunary Fourier coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 1,  6–17
  26. Sine and cosine series in $L_\varphi$ classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 10,  24–42
  27. Mixed Moduli of Smoothness in Mixed Metrics

    Mat. Zametki, 92:5 (2012),  747–761
  28. Improvement of the Ul'yanov inequality for mixed moduli of smoothness for functions with lacunary Fourier coefficients

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 1,  18–24
  29. Embedding Nikol'skiĭclasses into Lorentz spaces

    Sibirsk. Mat. Zh., 51:4 (2010),  911–929
  30. Relations between mixed moduli of smoothness, and embedding theorems for Nikol'skii classes

    Trudy Mat. Inst. Steklova, 269 (2010),  204–214
  31. Relations between moduli of smoothness in different metrics

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 3,  17–25
  32. Embedding theorems in constructive approximation

    Mat. Sb., 199:9 (2008),  107–148
  33. An inequality of P. L. Ul’yanov

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 3,  33–36
  34. Trigonometric series in the Orlicz–Lorentz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 6,  64–76
  35. Asymmetric approximations of functions of several variables in function spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8,  49–56
  36. Transformation of Fourier series using power and weakly oscillating sequences

    Mat. Zametki, 77:1 (2005),  99–116
  37. Trigonometric series with $(\vec{k},\vec{s})$-monotone coefficients in spaces with mixed quasinorm

    Sibirsk. Mat. Zh., 45:3 (2004),  658–675
  38. Embedding theorems for Besov–Nikol'skii and Weyl–Nikol'skii classes in a mixed metric

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 5,  18–26
  39. On trigonometric series with $(K,S)$-monotone coefficients in weighted spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 5,  42–54
  40. On the Element of Best Nonsymmetric Approximation in Spaces with Nonsymmetric Quasinorm

    Mat. Zametki, 74:6 (2003),  902–912
  41. On the Besov and Besov–Nikol'skii Classes and on Estimates for the Mixed Moduli of Smoothness of Fractional Derivatives

    Trudy Mat. Inst. Steklova, 243 (2003),  244–256
  42. The solution of diffusion problem with integral boundary condition

    Fundam. Prikl. Mat., 7:2 (2001),  339–349
  43. About one of Uljanov's theorems

    Fundam. Prikl. Mat., 5:4 (1999),  1159–1166
  44. On trigonometric series with monotone coefficients in Lorentz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 5,  59–67
  45. On the relations between generalized classes of Besov–Nikol'skii and Weyl–Nikol'skii functions

    Trudy Mat. Inst. Steklova, 214 (1997),  250–266
  46. On estimates for the modules of the smoothness of the functions with transformed Fourier series

    Fundam. Prikl. Mat., 1:2 (1995),  455–469
  47. Correlation between the Besov–Nikol'skii and Weyl–Nikol'skii classes of functions

    Trudy Mat. Inst. Steklov., 210 (1995),  218–238
  48. On the polynomial of best nonsymmetric approximation in an Orlicz space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 11,  50–56
  49. The polynomial of least deviation in an Orlicz space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  47–51
  50. Some properties of transformed Fourier series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 2,  58–61

  51. Mikhail Konstantinovich Potapov (on his 90th birthday)

    Uspekhi Mat. Nauk, 76:2(458) (2021),  185–186


© Steklov Math. Inst. of RAS, 2026