|
|
Publications in Math-Net.Ru
-
Chainable properties of semigroups of nonnegative matrices
Sib. Èlektron. Mat. Izv., 21:2 (2024), 810–822
-
Ergodicity Coefficient. New Proofs of Known Properties
Mat. Zametki, 114:6 (2023), 803–807
-
Ergodicity index of the set of stochastic matrices
Zap. Nauchn. Sem. POMI, 524 (2023), 7–17
-
An upper bound for the chainable index
Zap. Nauchn. Sem. POMI, 514 (2022), 5–17
-
Combinatorial structure of a semigroup of bistochastic matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 9, 80–85
-
Nonnegative chainable matrices and Kolmogorov's condition
Zap. Nauchn. Sem. POMI, 504 (2021), 5–20
-
Nonnegative chainable matrices
Zap. Nauchn. Sem. POMI, 496 (2020), 5–25
-
A New Proof of the Protasov–Voynov Theorem on Semigroups of Nonnegative Matrices
Mat. Zametki, 105:6 (2019), 807–815
-
Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
Zap. Nauchn. Sem. POMI, 472 (2018), 17–30
-
Temporal components of a semigroup of nonnegative matrices. A generalization of Minc's theorem on the structure of an irreducible matrix
Zap. Nauchn. Sem. POMI, 463 (2017), 5–12
-
Combinatorial structure of $k$-semiprimitive matrix families
Mat. Sb., 207:5 (2016), 3–16
-
Locally strongly primitive semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 453 (2016), 5–14
-
Combinatorial and spectral properties of semigroups of stochastic matrices
Zap. Nauchn. Sem. POMI, 439 (2015), 13–25
-
Combinatorial properties of entire semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 428 (2014), 13–31
-
Harary's theorem on signed graphs and reversibility of Markov chains
Zap. Nauchn. Sem. POMI, 419 (2013), 5–15
-
On the normal form of a stochastic matrix
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 60–72
-
Combinatorial properties of irreducible semigroups of nonnegative matrices
Zap. Nauchn. Sem. POMI, 405 (2012), 13–23
-
A criterion for unitary congruence between complex matrices
Zap. Nauchn. Sem. POMI, 395 (2011), 9–19
-
Bounds for Joint Spectral Radii of a Set of Nonnegative Matrices
Mat. Zametki, 87:1 (2010), 13–16
-
A formula for the Perron vector of a stochastic matrix
Zap. Nauchn. Sem. POMI, 367 (2009), 5–8
-
The Perron–Frobenius theorem – a proof with the use of Markov chains
Zap. Nauchn. Sem. POMI, 359 (2008), 5–16
-
Joint bounds for the Perron roots of nonnegative matrices with applications
Zap. Nauchn. Sem. POMI, 334 (2006), 30–56
-
The generalized monotonicity property of the Perron root
Zap. Nauchn. Sem. POMI, 334 (2006), 13–29
-
The matrix equation $AX-YB=C$ and related problems
Zap. Nauchn. Sem. POMI, 323 (2005), 15–23
-
Unitary similarity of algebras generated by pairs of orthoprojectors
Zap. Nauchn. Sem. POMI, 323 (2005), 5–14
-
Permanental compound matrices and Schneider's theorem
Zap. Nauchn. Sem. POMI, 309 (2004), 5–16
-
On the Unitary Similarity of Matrix Families
Mat. Zametki, 74:6 (2003), 815–826
-
Infinite extensions of Toeplitz matrices
Zap. Nauchn. Sem. POMI, 296 (2003), 5–14
-
Powers of sign portraits of real matrices
Zap. Nauchn. Sem. POMI, 284 (2002), 5–17
-
On the Simultaneous Triangulability of Matrices
Mat. Zametki, 68:5 (2000), 648–652
-
Rational procedures in the problem of common invariant subspaces of two matrices
Zap. Nauchn. Sem. POMI, 268 (2000), 9–23
-
Improvement of Frobenius bounds for the Perron root of a non-negative matrix
Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997), 131–138
-
On an analogue of Specht's criterion for unitary equivalence of matrices for the case of an arbitrary field
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 4, 3–6
-
Bounds for the Perron root of a nonnegative matrix involving the properties of its graph
Mat. Zametki, 58:4 (1995), 635–637
-
The influence of the position of the zeros in a non-negative matrix on the convergence of the algorithm for computing its Perron root
Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 770–775
-
An extension of generalized Hankel matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 5, 35–39
-
A remark on the problem locating the eigenvalues of real matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 11, 98–100
-
A sufficiency test for nonrepresentability of languages in finite-state probabilistic automata
Dokl. Akad. Nauk SSSR, 223:4 (1975), 777–780
-
The structure of the lexical functions that can be represented in finite-dimensional linear automata
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 7, 3–9
-
Algebraic studies at Kazan University from V. V. Morozov to our days
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 44–59
© , 2026