RUS  ENG
Full version
PEOPLE

Shumilova Vladlena Valerievna

Publications in Math-Net.Ru

  1. Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid

    Ufimsk. Mat. Zh., 16:1 (2024),  99–110
  2. Spectrum of one-dimensional eigenoscillations of two-phase layered composites

    J. Sib. Fed. Univ. Math. Phys., 16:1 (2023),  35–47
  3. Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  711–723
  4. The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  250–261
  5. Effective acoustic equations for a layered material described by the fractional Kelvin–Voigt model

    J. Sib. Fed. Univ. Math. Phys., 14:3 (2021),  351–359
  6. Spectrum of natural vibrations of a layered medium consisting of a Kelvin–Voigt material and a viscous incompressible fluid

    Sib. Èlektron. Mat. Izv., 17 (2020),  21–31
  7. Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4,  53–57
  8. Homogenization of the equations of state for a heterogeneous layered medium consisting of two creep materials

    Trudy Mat. Inst. Steklova, 295 (2016),  229–240
  9. Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials

    Trudy Mat. Inst. Steklova, 295 (2016),  218–228
  10. Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid

    J. Sib. Fed. Univ. Math. Phys., 8:3 (2015),  356–370
  11. Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers

    Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1208–1220
  12. Spectrum of One-dimensional Vibrations of a Layered Medium Consisting of a Kelvin–Voigt Material and a Viscous Incompressible Fluid

    J. Sib. Fed. Univ. Math. Phys., 6:3 (2013),  349–356
  13. Homogenizing the Viscoelasticity Problem with Long-Term Memory

    Mat. Zametki, 94:3 (2013),  441–454
  14. О спектре одномерных колебаний в среде из слоев упругого материала и вязкоупругого материала Кельвина–Фойгта

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  282–290
  15. On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials

    Sib. Zh. Ind. Mat., 15:4 (2012),  124–134
  16. Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a liquid

    CMFD, 39 (2011),  185–198
  17. On the compactness principle in variable space $L^p$ for periodic composite structures

    Sib. Èlektron. Mat. Izv., 6 (2009),  526–532
  18. On the Poincaré Inequality for Periodic Composite Structures

    Trudy Mat. Inst. Steklova, 261 (2008),  301–303
  19. On one property of two-scale convergence

    Differ. Uravn., 42:1 (2006),  139–140
  20. Compactness principle for periodic singular and fine structures

    Mat. Zametki, 79:6 (2006),  941–949
  21. Compactness principle for periodic singular and fine structures

    Mat. Zametki, 79:2 (2006),  244–253
  22. On the Homogenization of a Problem with Two Small Parameters in Double-Porosity Media

    Mat. Zametki, 74:5 (2003),  796–799


© Steklov Math. Inst. of RAS, 2026