|
|
Publications in Math-Net.Ru
-
Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid
Ufimsk. Mat. Zh., 16:1 (2024), 99–110
-
Spectrum of one-dimensional eigenoscillations of two-phase layered composites
J. Sib. Fed. Univ. Math. Phys., 16:1 (2023), 35–47
-
Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid
Sib. Èlektron. Mat. Izv., 20:2 (2023), 711–723
-
The spectrum of one-dimensional eigenoscillations of two-phase layered media with periodic structure
Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 250–261
-
Effective acoustic equations for a layered material described by the fractional Kelvin–Voigt model
J. Sib. Fed. Univ. Math. Phys., 14:3 (2021), 351–359
-
Spectrum of natural vibrations of a layered medium consisting of a Kelvin–Voigt material and a viscous incompressible fluid
Sib. Èlektron. Mat. Izv., 17 (2020), 21–31
-
Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 53–57
-
Homogenization of the equations of state for a heterogeneous layered medium consisting of two creep materials
Trudy Mat. Inst. Steklova, 295 (2016), 229–240
-
Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials
Trudy Mat. Inst. Steklova, 295 (2016), 218–228
-
Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid
J. Sib. Fed. Univ. Math. Phys., 8:3 (2015), 356–370
-
Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers
Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1208–1220
-
Spectrum of One-dimensional Vibrations of a Layered Medium Consisting of a Kelvin–Voigt Material and a Viscous Incompressible Fluid
J. Sib. Fed. Univ. Math. Phys., 6:3 (2013), 349–356
-
Homogenizing the Viscoelasticity Problem with Long-Term Memory
Mat. Zametki, 94:3 (2013), 441–454
-
О спектре одномерных колебаний в среде из слоев упругого материала и вязкоупругого материала Кельвина–Фойгта
Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 282–290
-
On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials
Sib. Zh. Ind. Mat., 15:4 (2012), 124–134
-
Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a liquid
CMFD, 39 (2011), 185–198
-
On the compactness principle in variable space $L^p$ for periodic composite structures
Sib. Èlektron. Mat. Izv., 6 (2009), 526–532
-
On the Poincaré Inequality for Periodic Composite Structures
Trudy Mat. Inst. Steklova, 261 (2008), 301–303
-
On one property of two-scale convergence
Differ. Uravn., 42:1 (2006), 139–140
-
Compactness principle for periodic singular and fine structures
Mat. Zametki, 79:6 (2006), 941–949
-
Compactness principle for periodic singular and fine structures
Mat. Zametki, 79:2 (2006), 244–253
-
On the Homogenization of a Problem with Two Small Parameters in Double-Porosity Media
Mat. Zametki, 74:5 (2003), 796–799
© , 2026