RUS  ENG
Full version
PEOPLE

Ilyutko Denis Petrovich

Publications in Math-Net.Ru

  1. A circle criterion for a generalized cross graph in terms of minimal excluded minors

    Mat. Sb., 213:12 (2022),  53–67
  2. On the local and boundary behaviour of inverse maps on Riemannian manifolds

    Mat. Sb., 213:1 (2022),  46–68
  3. Weighted systems of framed chord diagrams corresponding to Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 6,  60–64
  4. Behavior of the binary rank of a graph when vertices and edges are added

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6,  21–26
  5. Boundary behaviour of open discrete mappings on Riemannian manifolds. II

    Mat. Sb., 211:4 (2020),  63–111
  6. Boundary behaviour of open discrete mappings on Riemannian manifolds

    Mat. Sb., 209:5 (2018),  3–53
  7. Diagram approach in the theory of knots and its application in the graph theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3,  65–71
  8. Removal of isolated singularities of generalized quasiisometries on Riemannian manifolds

    CMFD, 63:2 (2017),  266–277
  9. Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$

    Mat. Sb., 208:4 (2017),  17–50
  10. Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds

    Mat. Sb., 207:4 (2016),  65–112
  11. Graph-links: nonrealizability, orientation, and Jones polynomial

    CMFD, 51 (2013),  33–63
  12. The length of an extremal network in a normed space: Maxwell formula

    CMFD, 51 (2013),  5–20
  13. Матрицы пересечений эйлеровых циклов 4-валентных графов с крестовой структурой

    Mat. Pros., Ser. 3, 16 (2012),  105–131
  14. Parity in knot theory and graph-links

    CMFD, 41 (2011),  3–163
  15. Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits

    Mat. Sb., 202:9 (2011),  53–76
  16. Branching extremals of the functional of $\lambda$-normed length

    Mat. Sb., 197:5 (2006),  75–98
  17. Geometry of extremal networks on $\lambda$-normed planes

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 4,  52–54
  18. Locally Minimal Trees in $n$-Normed Spaces

    Mat. Zametki, 74:5 (2003),  656–668


© Steklov Math. Inst. of RAS, 2026