RUS  ENG
Full version
PEOPLE

Vlasov Aleksei Sergeevich

Publications in Math-Net.Ru

  1. Variations in the electric potential of a metal nanoparticle on a dielectric

    Fizika i Tekhnika Poluprovodnikov, 59:10 (2025),  620–628
  2. Self-catalytic growth of GaInP nanostructures on silicon substrates from vapor phase: choice of source composition and catalytic droplets

    Fizika i Tekhnika Poluprovodnikov, 59:5 (2025),  265–269
  3. Ferroelectric properties of (Al,Ga)InP$_2$ alloys

    Fizika i Tekhnika Poluprovodnikov, 59:3 (2025),  130–135
  4. Shingled photovoltaic converters based on GaSb

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:14 (2025),  15–19
  5. GaInP on silicon nanostructures self-catalyst growth from vapor phase

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:9 (2025),  45–49
  6. Phase separation effects in AlGaAsSb/GaSb alloys

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:3 (2025),  10–12
  7. Impact of the atomic ordering degree on the ferroelectric properties of GaInP$_2$ alloys

    Optics and Spectroscopy, 132:11 (2024),  1127–1130
  8. Local doping of monolayer WSe$_2$ on piezoelectric GaInP$_2$ and GaN substrates

    Fizika i Tekhnika Poluprovodnikov, 58:8 (2024),  401–408
  9. Optical characterization of InGaAsP/InP(001) heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:15 (2024),  47–50
  10. Numerical modelling of aluminum distribution profiles in the Al–Ga–As–Sn epitaxial layer

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:1 (2024),  36–38
  11. Gradient layers in a four-component Al–Ga–As–Sn system growth by liquid-phase epitaxy

    Zhurnal Tekhnicheskoi Fiziki, 93:10 (2023),  1476–1480
  12. Selective area epitaxy of InP/GaInP$_2$ quantum dots from metal-organic compounds

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  620–623
  13. Development of the technology for production power laser conventers on wavelength 1.06 $\mu$m

    Fizika i Tekhnika Poluprovodnikov, 57:7 (2023),  590–593
  14. Features of InP on Si nanowire growth

    Fizika i Tekhnika Poluprovodnikov, 57:7 (2023),  530–533
  15. Solid-phase substitution processes with phosphorus in InAs and InSb

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:20 (2023),  20–22
  16. Influence of source composition on the planar growth of nanowires during catalytic growth in a quasi-closed volume

    Fizika i Tekhnika Poluprovodnikov, 56:11 (2022),  1082–1087
  17. Obtaining anisotypic heterostructures for a GaSb-based photovoltaic converter due to solid-phase substitution reactions

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:21 (2022),  3–5
  18. Silicon-doped GaSb grown by MOVPE in a wide range of the V/III ratio

    Fizika i Tekhnika Poluprovodnikov, 55:10 (2021),  932–936
  19. Replacing tunnel junctions in InP with conduction channels with GaP crystallites

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:22 (2021),  52–54
  20. Smoothing the surface of gallium antimonide

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:23 (2020),  48–50
  21. Ga(In)AsP lateral nanostructures as the optical component of GaAs-based photovoltaic converters

    Fizika i Tekhnika Poluprovodnikov, 53:12 (2019),  1714–1717
  22. High-resistivity gallium antimonide produced by metal–organic vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 53:12 (2019),  1599–1603
  23. Investigation of composition uniformity on thickness of GaInAsP layers grown on InP substrates by vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 53:11 (2019),  1512–1518
  24. Luminescence properties of GaInAsP layers with graded composition–depth profiles grown on InP substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:20 (2019),  22–25
  25. A study of ohmic contacts of power photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:1 (2019),  12–15
  26. AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation

    Fizika i Tekhnika Poluprovodnikov, 52:13 (2018),  1647–1650
  27. Nanostructure growth in the Ga(In)AsP–GaAs system under quasi-equilibrium conditions

    Fizika i Tekhnika Poluprovodnikov, 52:10 (2018),  1244–1249
  28. Wigner localization and whispering gallery modes of electrons in quantum dots

    Fizika i Tekhnika Poluprovodnikov, 52:4 (2018),  478
  29. Density control of InP/GaInP quantum dots grown by metal-organic vapor-phase epitaxy

    Fizika i Tekhnika Poluprovodnikov, 52:4 (2018),  477
  30. Lasing in microdisks with an active region based on lattice-matched InP/AlInAs nanostructures

    Zhurnal Tekhnicheskoi Fiziki, 87:7 (2017),  1066–1070
  31. Model calculating high-speed collisions between bodies with different shapes and massive metallic obstacles

    Zhurnal Tekhnicheskoi Fiziki, 87:7 (2017),  1033–1039
  32. Formation of a $p$-type emitter with the involvement of surfactants in GaAs photoelectric converters

    Fizika i Tekhnika Poluprovodnikov, 51:5 (2017),  699–703
  33. Modification of the surface of GaAs and observation of surface enhanced Raman scattering after the diffusion of indium

    Fizika i Tekhnika Poluprovodnikov, 51:5 (2017),  611–614
  34. High-rate deformation of nanocrystalline iron and copper

    Zhurnal Tekhnicheskoi Fiziki, 86:11 (2016),  70–74
  35. Site-Controlled Growth of Single InP QDs

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1120–1123
  36. Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells

    Zhurnal Tekhnicheskoi Fiziki, 83:7 (2013),  106–110
  37. High-speed jet group penetration into brittle materials

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:5 (2013),  69–75
  38. High-efficiency ($\eta$ = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  810–815
  39. Gas-fired thermophotovoltaic generator based on metallic emitters and GaSb cells

    Fizika i Tekhnika Poluprovodnikov, 44:9 (2010),  1284–1289
  40. Thermophotovoltaic generators based on gallium antimonide

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  270–277
  41. Highly efficient photovoltaic cells based on In$_{0.53}$Ga$_{0.47}$As alloys with isovalent doping

    Fizika i Tekhnika Poluprovodnikov, 44:2 (2010),  240–245


© Steklov Math. Inst. of RAS, 2026