RUS  ENG
Full version
PEOPLE

Reznik Rodion Romanovich

Publications in Math-Net.Ru

  1. Влияние дизайна буферного слоя на фотолюминесценцию InAs квантовых точек, выращенных на подложках GaAs/Si(100)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 52:7 (2026),  16–21
  2. Energy transfer in system of GaAs/AlGaAs quantum wells with different thickness and thick barriers

    Fizika Tverdogo Tela, 67:1 (2025),  28–30
  3. Growth of atomically smooth AlN layers on Si(111) substrates through an amorphous Si$_x$N$_y$ layer by plasma-assisted molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:14 (2025),  39–43
  4. Low-temperature growth of InAs nanowires and nanosheets on Si(100) substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:7 (2024),  27–30
  5. Retranslation of luminescence excitation during cascade transitions in hybrid nanostructures based on INP/INASP/INP NWs and CDSE/ZNS-TOPO QDs

    Optics and Spectroscopy, 131:10 (2023),  1403–1411
  6. Formation of InAs nanoislands on silicon surfaces and heterostructures based on them

    Fizika i Tekhnika Poluprovodnikov, 57:5 (2023),  332–337
  7. Effect of nitrogen plasma treatment on the structural and optical properties of InGaN

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:5 (2023),  32–35
  8. Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy

    Fizika i Tekhnika Poluprovodnikov, 56:7 (2022),  689–692
  9. Kinetics of spontaneous formation of core shell structure in (In,Ga)As nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:3 (2022),  32–35
  10. Specific features of structural stresses in InGaN/GaN nanowires

    Fizika i Tekhnika Poluprovodnikov, 55:9 (2021),  785–788
  11. MBE growth of InGaN nanowires on SiC/Si(111) and Si(111) substrates

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:21 (2021),  32–35
  12. Directional radiation from GaAs quantum dots in AlGaAs nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:8 (2021),  47–50
  13. Nonlinear bleaching of InAs nanowires in the visible range

    Optics and Spectroscopy, 128:1 (2020),  128–133
  14. The significance of fitting in the description of luminescence kinetics of hybrid nanowires

    Optics and Spectroscopy, 128:1 (2020),  122–127
  15. Luminescence photodynamics of hybrid-structured InP/InAsP/InP nanowires passivated by a layer of ТОРО-CdSe/ZnS quantum dots

    Fizika i Tekhnika Poluprovodnikov, 54:9 (2020),  952–957
  16. Specific growth features of nanostructures for terahertz quantum cascade lasers and their physical properties

    Fizika i Tekhnika Poluprovodnikov, 54:9 (2020),  902–905
  17. Synthesis of morphologically developed ingan nanostructures on silicon: influence of the substrate temperature on the morphological and optical properties

    Fizika i Tekhnika Poluprovodnikov, 54:9 (2020),  884–887
  18. MBE-grown In$_x$ Ga$_{1-x}$ As nanowires with 50% composition

    Fizika i Tekhnika Poluprovodnikov, 54:6 (2020),  542
  19. Selective-area growth of GaN nanowires on patterned SiO$_{x}$/Si substrates by molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:21 (2020),  32–35
  20. Nonradiative energy transfer in hybrid nanostructures with varied dimensionality

    Fizika i Tekhnika Poluprovodnikov, 53:9 (2019),  1289–1292
  21. Synthesis by molecular beam epitaxy and properties of InGaN nanostructures of branched morphology on a silicon substrate

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:21 (2019),  48–50
  22. The influence of EL2 centers on the photoelectric response of an array of radial GaAs/AlGaAs nanowires

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:16 (2019),  37–40
  23. Solar cell based on core/shell nanowires

    Fizika i Tekhnika Poluprovodnikov, 52:12 (2018),  1464–1468
  24. MBE growth and structural properties of GaP and InP nanowires on a SiC substrate with a graphene layer

    Fizika i Tekhnika Poluprovodnikov, 52:11 (2018),  1317–1320
  25. Phosphorus-based nanowires grown by molecular-beam epitaxy on silicon

    Fizika i Tekhnika Poluprovodnikov, 52:11 (2018),  1304–1307
  26. MBE growth and structural properties of InAs and InGaAs nanowires with different mole fraction of In on Si and strongly mismatched SiC/Si(111) substrates

    Fizika i Tekhnika Poluprovodnikov, 52:5 (2018),  522
  27. GaAs wurtzite nanowires for hybrid piezoelectric solar cells

    Fizika i Tekhnika Poluprovodnikov, 52:5 (2018),  511
  28. Optical properties of GaN nanowires grown by MBE on SiC/Si(111) hybrid substrate

    Fizika i Tekhnika Poluprovodnikov, 52:5 (2018),  509
  29. Hybrid GaAs/AlGaAs nanowire – quantum dot system for single photon sources

    Fizika i Tekhnika Poluprovodnikov, 52:4 (2018),  469
  30. GaP/Si(111) nanowire crystals synthesized by molecular-beam epitaxy with switching between the hexagonal and cubic phases

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  5–9
  31. Coherent growth of InP/InAsP/InP nanowires on a Si (111) surface by molecular-beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:3 (2018),  55–61
  32. GaP/Si (111) nanowire crystals synthesized by molecular-beam epitaxy with switching between the hexagonal and cubic phases

    Fizika i Tekhnika Poluprovodnikov, 51:12 (2017),  1587
  33. MBE growth of ultrathin III–V nanowires on a highly mismatched SiC/Si(111) substrate

    Fizika i Tekhnika Poluprovodnikov, 51:11 (2017),  1525–1529
  34. Terahertz radiation generation in multilayer quantum-cascade heterostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:7 (2017),  86–94
  35. Growth and optical properties of filamentary GaN nanocrystals grown on a hybrid SiC/Si(111) substrate by molecular beam epitaxy

    Fizika Tverdogo Tela, 58:10 (2016),  1886–1889
  36. Surface passivation of GaAs nanowires by the atomic layer deposition of AlN

    Fizika i Tekhnika Poluprovodnikov, 50:12 (2016),  1644–1646
  37. Hybrid AlGaAs/GaAs/AlGaAs nanowires with a quantum dot grown by molecular beam epitaxy on silicon

    Fizika i Tekhnika Poluprovodnikov, 50:11 (2016),  1441–1444
  38. Multilayer heterostructures for quantum-cascade lasers operating in the terahertz frequency range

    Fizika i Tekhnika Poluprovodnikov, 50:5 (2016),  674–678


© Steklov Math. Inst. of RAS, 2026