RUS  ENG
Full version
PEOPLE

Sherstyukov Vladimir Borisovich

Publications in Math-Net.Ru

  1. Integral representations for the argument of the gamma function of a complex variable

    Dokl. RAN. Math. Inf. Proc. Upr., 524 (2025),  19–24
  2. An analytical formula for the argument of the gamma function as a complex quantity

    Mat. Zametki, 118:5 (2025),  748–763
  3. Asymptotic Formulas for Sequences Arising in the Problem of Approximating the Euler Number

    Mat. Zametki, 118:4 (2025),  529–543
  4. Asymptotic behavior of “long” products of sines and the Pisot numbers

    Mat. Zametki, 117:1 (2025),  16–31
  5. On multiple zeros of one entire function which is of interest for the theory of inverse problems

    Vladikavkaz. Mat. Zh., 27:1 (2025),  5–20
  6. Elementary method in the problem of spectral radius calculation for particular set of functional operators

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 3,  3–11
  7. Research activity of the Chair of Mathematical Analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  61–65
  8. A certain formula of Liouville

    Chebyshevskii Sb., 25:3 (2024),  335–342
  9. Lower average estimate for the minimum modulus on circles for an entire function of genus zero

    CMFD, 70:1 (2024),  150–162
  10. On limit cycles of autonomous systems

    CMFD, 70:1 (2024),  77–98
  11. Calculation of the Limit of a Special Sequence of Trigonometric Functions

    Mat. Zametki, 115:2 (2024),  298–303
  12. Strengthening of Gaisin's lemma on the minimum modulus of even canonical products

    Chebyshevskii Sb., 24:1 (2023),  127–138
  13. Enveloping of the Values of an Analytic Function Related to the Number $e$

    Mat. Zametki, 113:3 (2023),  374–391
  14. Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions

    Ufimsk. Mat. Zh., 15:4 (2023),  30–41
  15. Lower bound for minimum of modulus of entire function of genus zero with positive roots in terms of degree of maximal modulus at frequent sequence of points

    Ufimsk. Mat. Zh., 14:4 (2022),  80–99
  16. On Taylor coefficients of analytic function related with Euler number

    Ufimsk. Mat. Zh., 14:3 (2022),  74–89
  17. On the connection of Bernstein and Kantorovich polynomials for a symmetric module function

    Vladikavkaz. Mat. Zh., 24:1 (2022),  87–99
  18. On a probabilistic Bernstein model

    Teor. Veroyatnost. i Primenen., 66:2 (2021),  392–401
  19. Integral representations of quantities associated with Gamma function

    Ufimsk. Mat. Zh., 13:4 (2021),  51–64
  20. Comparative analysis of two-sided estimates of the central binomial coefficient

    Chelyab. Fiz.-Mat. Zh., 5:1 (2020),  70–95
  21. On the arithmetic properties of a number $\sqrt[3]{2}+ \sqrt{3}$

    Math. Ed., 2020, no. 3(95),  2–7
  22. Yuri Fedorovich Korobeinik (on his 90's anniversary)

    Vladikavkaz. Mat. Zh., 22:3 (2020),  151–157
  23. Estimates of indicators of an entire function with negative roots

    Vladikavkaz. Mat. Zh., 22:3 (2020),  30–46
  24. Generalized Popoviciu expansions for Bernstein polynomials of a rational module

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170 (2019),  71–117
  25. Asymptotic properties of entire functions with given laws of distribution of zeros

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 161 (2019),  104–129
  26. Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial relations

    Vladikavkaz. Mat. Zh., 21:3 (2019),  68–86
  27. Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets

    Fundam. Prikl. Mat., 22:1 (2018),  51–97
  28. On growth rate of coefficients in Bernstein polynomials for the standard modulus function on a symmetric interval

    Ufimsk. Mat. Zh., 10:3 (2018),  60–78
  29. Computer analysis of the attractors of zeros for classical Bernstein polynomials

    Fundam. Prikl. Mat., 21:4 (2016),  151–174
  30. Bernstein polynomials for a standard module function on the symmetric interval

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  425–435
  31. Minimal value for the type of an entire function of order $\rho\in(0,1)$, whose zeros lie in an angle and have a prescribed density

    Ufimsk. Mat. Zh., 8:1 (2016),  113–126
  32. Gluing rule for Bernstein polynomials on the symmetric interval

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  288–300
  33. Distribution of the zeros of canonical products and weighted condensation index

    Mat. Sb., 206:9 (2015),  139–180
  34. Application of Krein’s series to calculation of sums containing zeros of the Bessel functions

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  575–581
  35. The problem of Leont'ev on entire functions of completely regular growth

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  30–35
  36. On the Growth of Entire Functions with Discretely Measurable Zeros

    Mat. Zametki, 91:5 (2012),  674–690
  37. The module function approximation by Bernstein polynomials

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  6–40
  38. On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros

    Izv. RAN. Ser. Mat., 75:1 (2011),  3–28
  39. Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series

    Mat. Sb., 202:12 (2011),  137–156
  40. Dual characterization of absolutely representing systems in inductive limits of Banach spaces

    Sibirsk. Mat. Zh., 51:4 (2010),  930–943
  41. Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation

    Mat. Sb., 200:3 (2009),  147–160
  42. On the Regularity of Growth of Canonical Products with Real Zeros

    Mat. Zametki, 82:4 (2007),  621–630
  43. Nontrivial expansions of zero and representation of analytic functions by series of simple fractions

    Sibirsk. Mat. Zh., 48:2 (2007),  458–473
  44. On Some Criteria for Completely Regular Growth of Entire Functions of Exponential Type

    Mat. Zametki, 80:1 (2006),  119–130
  45. On a Problem of Leont'ev and Representing Systems of Exponentials

    Mat. Zametki, 74:2 (2003),  301–313
  46. On a question about $\gamma$-sufficient sets

    Sibirsk. Mat. Zh., 41:4 (2000),  935–943

  47. On one symmetric inequality

    Math. Ed., 2021, no. 4(100)-2,  69–74


© Steklov Math. Inst. of RAS, 2026