RUS  ENG
Full version
PEOPLE

Nadtochiy Aleksei Mikailovich

Publications in Math-Net.Ru

  1. Spatial current distribution in semiconductor optical amplifiers with ridge waveguides and quantum well-dot active region

    Optics and Spectroscopy, 133:10 (2025),  1063–1067
  2. Photoelectric laser radiation converter $\lambda$ = 1064 nm based on GaInAsP/InP

    Fizika i Tekhnika Poluprovodnikov, 59:8 (2025),  447–451
  3. Experimental and analytical study of the mechanical stress compensation problem in the InGaAs multiple quantum wells for near-infrared light emitting diodes

    Fizika i Tekhnika Poluprovodnikov, 59:4 (2025),  190–194
  4. High-frequency modulation of a quantum dot microring laser at elevated temperature

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:20 (2025),  32–35
  5. Handling of InGaAs quantum well parameters in the active region of near-IR LEDs (850–960 nm)

    Optics and Spectroscopy, 132:11 (2024),  1146–1149
  6. Study of the incorporation of group V atoms into arsenide-phosphide solid solutions grown by vapor-phase epitaxy using (CH$_3$)$_3$As an arsenic source

    Fizika i Tekhnika Poluprovodnikov, 58:10 (2024),  541–543
  7. Study of the structural and optical properties of InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 58:6 (2024),  318–325
  8. Optical amplification in InGaAs quantum well-dot waveguide heterostructures in spectral range of 1010–1075 nm

    Fizika i Tekhnika Poluprovodnikov, 58:6 (2024),  313–317
  9. Dependence of lasing wavelength on optical loss in quantum dot laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 50:21 (2024),  57–60
  10. Investigation of high-temperature generation of microdisk lasers with optically coupled waveguide

    Optics and Spectroscopy, 131:11 (2023),  1483–1485
  11. The effect of surface passivation of GaAs-based cylindrical mesa structures on their optical properties

    Optics and Spectroscopy, 131:8 (2023),  1112–1117
  12. Effect of temperature on current through various recombination channels in GaAs solar cells with GaInAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 57:8 (2023),  700–705
  13. Epitaxial heterostructures of the active region for near-infrared LEDs

    Fizika i Tekhnika Poluprovodnikov, 57:7 (2023),  538–541
  14. Model for speed performance of quantum-dot waveguide photodiode

    Fizika i Tekhnika Poluprovodnikov, 57:3 (2023),  215–220
  15. Investigation of a $p$$i$$n$ photodetector with an absorbing medium based on InGaAs/GaAs quantum well-dots

    Fizika i Tekhnika Poluprovodnikov, 57:3 (2023),  202–206
  16. Information encoding using two-level generation in a quantum dot laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:5 (2023),  18–21
  17. Temperature dependencies of radiative and nonradiative carrier lifetimes in InGaAs quantum well-dots

    Fizika i Tekhnika Poluprovodnikov, 56:10 (2022),  993–996
  18. Internal loss in diode lasers with quantum well-dots

    Fizika i Tekhnika Poluprovodnikov, 56:9 (2022),  922–927
  19. Bimodality in the electroluminescence spectra of quantum well-dots InGaAs nanostructures

    Fizika i Tekhnika Poluprovodnikov, 56:1 (2022),  97–100
  20. Peculiarities of growth of InAs quantum dot arrays with low surface density by molecular beam epitaxy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:24 (2022),  42–46
  21. Two-state lasing in injection microdisks with InAs/InGaAs quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:12 (2022),  40–43
  22. High-speed photodetectors based on InGaAs/GaAs quantum well-dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:4 (2022),  32–35
  23. Ultrahigh modal gain in stripe injection lasers and microlasers based on InGaAs/GaAs quantum dots

    Kvantovaya Elektronika, 52:7 (2022),  593–596
  24. Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface emitting lasers

    Zhurnal Tekhnicheskoi Fiziki, 91:12 (2021),  2008–2017
  25. Optical properties of three-dimensional InGaP(As) islands formed by substitution of fifth-group elements

    Optics and Spectroscopy, 129:2 (2021),  218–222
  26. Increase in the efficiency of a tandem of semiconductor laser – optical amplifier based on self-organizing quantum dots

    Fizika i Tekhnika Poluprovodnikov, 55:12 (2021),  1223–1228
  27. Saturation power of a semiconductor optical amplifier based on self-organized quantum dots

    Fizika i Tekhnika Poluprovodnikov, 55:9 (2021),  820–825
  28. Infrared (850 nm) light-emitting diodes with multiple InGaAs quantum wells and “back” reflector

    Fizika i Tekhnika Poluprovodnikov, 55:8 (2021),  699–703
  29. Effect of the active region and waveguide design on the performance of edge-emitting lasers based on InGaAs/GaAs quantum well-dots

    Fizika i Tekhnika Poluprovodnikov, 55:3 (2021),  256–263
  30. Impact of substrate in calculating the electrical resistance of microdisk lasers

    Fizika i Tekhnika Poluprovodnikov, 55:2 (2021),  195–200
  31. Increasing the optical power of InGaAs/GaAs microdisk lasers transferred to a silicon substrate by thermal compression

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:20 (2021),  3–6
  32. Energy consumption at high-frequency modulation of an uncooled InGaAs/GaAs/AlGaAs microdisk laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:13 (2021),  28–31
  33. Spectroscopy of photoluminescence excitation of InAs/InGaAs/GaAs quantum dot array in 20–300 K temperature range

    Optics and Spectroscopy, 128:1 (2020),  110–117
  34. Comparative analysis of the optical and physical properties of inas and InAs, In$_{0.8}$Ga$_{0.2}$As quantum dots and solar cells based on them

    Fizika i Tekhnika Poluprovodnikov, 54:10 (2020),  1079–1087
  35. Ultimate lasing temperature of microdisk lasers

    Fizika i Tekhnika Poluprovodnikov, 54:6 (2020),  570–574
  36. High-speed photodetectors for the 950–1100 nm optical range based on In$_{0.4}$Ga$_{0.6}$As/GaAs quantum well-dot nanostructures

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:24 (2020),  11–14
  37. Lasing of injection microdisks with InAs/InGaAs/GaAs quantum dots transferred to silicon

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:16 (2020),  3–6
  38. A micro optocoupler based on a microdisk laser and a photodetector with an active region based on quantum well-dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:13 (2020),  7–10
  39. The influence of the number of rows of GaInAs quantum objects on the saturation current of GaAs photoconverters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:12 (2020),  30–33
  40. The effect of self-heating on the modulation characteristics of a microdisk laser

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:11 (2020),  3–7
  41. Experimental and theoretical examination of the photosensitivity spectra of structures with In$_{0.4}$Ga$_{0.6}$As quantum well-dots of the optical range (900–1050 nm)

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:5 (2020),  3–6
  42. InGaAlP/GaAs injection lasers of orangeoptical range ($\sim$600nm)

    Fizika i Tekhnika Poluprovodnikov, 53:12 (2019),  1708–1713
  43. Time-resolved photoluminescence of InGaAs nanostructures different in quantum dimensionality

    Fizika i Tekhnika Poluprovodnikov, 53:11 (2019),  1520–1526
  44. Lasers based on quantum well-dots emitting in the 980- and 1080-nm optical ranges

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:4 (2019),  42–45
  45. Effect of epitaxial-structure design and growth parameters on the characteristics of metamorphic lasers of the 1.46-$\mu$m optical range based on quantum dots grown on GaAs substrates

    Fizika i Tekhnika Poluprovodnikov, 52:10 (2018),  1191–1196
  46. Multilayer quantum well–dot InGaAs heterostructures in GaAs-based photovoltaic converters

    Fizika i Tekhnika Poluprovodnikov, 52:10 (2018),  1131–1136
  47. In$_{0.8}$Ga$_{0.2}$As quantum dots for GaAs solar cells: metal-organic vapor-phase epitaxy growth peculiarities and properties

    Fizika i Tekhnika Poluprovodnikov, 52:7 (2018),  729–735
  48. Bimodality in arrays of In$_{0.4}$Ga$_{0.6}$As hybrid quantum-confined heterostructures grown on GaAs substrates

    Fizika i Tekhnika Poluprovodnikov, 52:1 (2018),  57–62
  49. InAs QDs in a metamorphic In$_{0.25}$Ga$_{0.75}$As matrix, grown by MOCVD

    Fizika i Tekhnika Poluprovodnikov, 51:5 (2017),  704–710
  50. Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD

    Fizika i Tekhnika Poluprovodnikov, 51:3 (2017),  372–377
  51. Optical properties of InGaAs/InGaAlAs quantum wells for the 1520–1580 nm spectral range

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1208–1212
  52. Optical properties of hybrid quantum-confined structures with high absorbance

    Fizika i Tekhnika Poluprovodnikov, 50:9 (2016),  1202–1207
  53. Determination of the technological growth parameters in the InAs–GaAs system for the MOCVD synthesis of “Multimodal” InAs QDs

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1136–1143
  54. Effect of the bimodality of a QD array on the optical properties and threshold characteristics of QD lasers

    Fizika i Tekhnika Poluprovodnikov, 49:8 (2015),  1115–1119
  55. The effect of sulfide passivation on luminescence from microdisks with quantum wells and quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 41:13 (2015),  86–94
  56. Multilayer quantum-dot arrays of high bulk density

    Fizika i Tekhnika Poluprovodnikov, 48:11 (2014),  1487–1491
  57. Degradation-robust 850-nm vertical-cavity surface-emitting lasers for 25Gb/s optical data transmission

    Fizika i Tekhnika Poluprovodnikov, 48:1 (2014),  81–87
  58. Spectral dependence of the linewidth enhancement factor in quantum dot lasers

    Fizika i Tekhnika Poluprovodnikov, 47:12 (2013),  1681–1686
  59. Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region

    Fizika i Tekhnika Poluprovodnikov, 47:10 (2013),  1396–1399
  60. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    Fizika i Tekhnika Poluprovodnikov, 47:8 (2013),  1102–1108
  61. Single-spatial-mode semiconductor VCSELs with a nonplanar upper dielectric DBR

    Fizika i Tekhnika Poluprovodnikov, 47:7 (2013),  985–989
  62. High-frequency electrical properties of a vertical-cavity surface-emitting laser with a monolithically integrated electro-optical modulator

    Fizika i Tekhnika Poluprovodnikov, 47:5 (2013),  684–689
  63. Optical anisotropy of InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 47:1 (2013),  87–91
  64. Laser generation in microdisc resonators with InAs/GaAs quantum dots transferred on a silicon substrate

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 39:18 (2013),  70–77
  65. High-temperature lasing in a microring laser with an active region based on InAs/InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 46:8 (2012),  1063–1066
  66. Influence of the position of InGaAs quantum dot array on the spectral characteristics of AlGaAs/GaAs photovoltaic converters

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:22 (2012),  43–49
  67. Decreasing parasitic capacitance in vertical-cavity surface-emitting laser with selectively oxidized aperture

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 38:3 (2012),  10–16
  68. Features of molecular-beam epitaxy and structural properties of AlInSb-based heterostructures

    Fizika i Tekhnika Poluprovodnikov, 45:10 (2011),  1379–1385
  69. Effect of AlGaAs–(AlGa)$_x$O$_y$ pedestal parameters on characteristics of a microdisk laser with active region based on InAs/InGaAs quantum dots

    Fizika i Tekhnika Poluprovodnikov, 45:7 (2011),  992–995
  70. Matrices of 960-nm vertical-cavity surface-emitting lasers

    Fizika i Tekhnika Poluprovodnikov, 45:6 (2011),  836–839
  71. Dynamic properties of AlGaAs vertical cavity surface emitting lasers with active region based on submonolayer InAs insertions

    Fizika i Tekhnika Poluprovodnikov, 45:5 (2011),  688–693
  72. Analysis of mechanisms of carrier emission in the $p$$i$$n$ structures with In(Ga)As quantum dots

    Fizika i Tekhnika Poluprovodnikov, 44:10 (2010),  1352–1356
  73. Optical anisotropy of InAs quantum dots

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 36:23 (2010),  24–30


© Steklov Math. Inst. of RAS, 2026