RUS  ENG
Full version
PEOPLE

Shur Mikhail Grigor'evich

Publications in Math-Net.Ru

  1. Exponentials and $R$-recurrent random walks on groups

    Teor. Veroyatnost. i Primenen., 61:3 (2016),  580–588
  2. Two theorems on convergence parameter of an irreducible Markov chain

    Teor. Veroyatnost. i Primenen., 58:1 (2013),  200–205
  3. Uniform integrability for strong ratio limit theorems. III

    Teor. Veroyatnost. i Primenen., 57:4 (2012),  682–700
  4. Convergence Parameter Associated with a Markov Chain and a Family of Functions

    Mat. Zametki, 87:2 (2010),  294–304
  5. Uniform integrability for strong ratio limit theorems. II

    Teor. Veroyatnost. i Primenen., 55:3 (2010),  446–461
  6. Majorizing Potentials in Strong Ratio Limit Theorems

    Mat. Zametki, 84:1 (2008),  117–126
  7. Uniform integrability condition in strong ration limit theorems

    Teor. Veroyatnost. i Primenen., 50:3 (2005),  517–532
  8. On the Lin Condition in Strong Ratio Limit Theorems

    Mat. Zametki, 75:6 (2004),  927–940
  9. Quasi-Feller Extensions of Markov Chains and Existence of Dual Chains

    Mat. Zametki, 69:1 (2001),  133–143
  10. Ratio limit theorems for self-adjoint operators and symmetric Markov chains

    Teor. Veroyatnost. i Primenen., 45:2 (2000),  268–288
  11. On the theorem on asymptotic equidistribution of the convolution powers of symmetric measures on a unimodular group

    Mat. Zametki, 60:1 (1996),  120–126
  12. Asymptotic equidistribution of symmetric random walks on unimodular groups

    Teor. Veroyatnost. i Primenen., 40:2 (1995),  347–360
  13. The Asymptotic Equidistribution of Convolution Powers of Symmetric Probability Measures on Unimodular Groups

    Funktsional. Anal. i Prilozhen., 27:1 (1993),  92–93
  14. On the compactness of a family of functions that are harmonic for a random walk on a group

    Teor. Veroyatnost. i Primenen., 36:1 (1991),  194–198
  15. Absolutely continuously and singularly generated harmonic functions for random walks on groups

    Teor. Veroyatnost. i Primenen., 35:4 (1990),  787–793
  16. On Limit Theorems for Ratios Which Generated by Random Walks in Homogeneous Spaces. II

    Teor. Veroyatnost. i Primenen., 34:3 (1989),  516–527
  17. On Limit Theorems for Ratios Which Generated by Random Walks in Homogeneous Spaces. I

    Teor. Veroyatnost. i Primenen., 33:4 (1988),  706–719
  18. Asymptotic properties of positive operator powers. II

    Teor. Veroyatnost. i Primenen., 30:2 (1985),  241–251
  19. Asymptotic properties of positive operator powers. I

    Teor. Veroyatnost. i Primenen., 29:4 (1984),  692–702
  20. The Poisson theorem and the Markov chains

    Teor. Veroyatnost. i Primenen., 29:1 (1984),  123–125
  21. Asymptotic behavior of powers of a positive operator

    Funktsional. Anal. i Prilozhen., 16:2 (1982),  91–93
  22. Invariant measures of Markov chains and Fellerian extensions of chains

    Teor. Veroyatnost. i Primenen., 26:3 (1981),  496–509
  23. Analog of the limit theorem for ratios in the case of parts of an increasing chain

    Mat. Zametki, 27:1 (1980),  129–136
  24. On the continuity criteria for Markov processes

    Teor. Veroyatnost. i Primenen., 25:1 (1980),  142–149
  25. Ergodicity echo for parts of recurrent processes

    Mat. Zametki, 24:1 (1978),  133–140
  26. An ergodic theorem for Markov processes. II

    Teor. Veroyatnost. i Primenen., 22:4 (1977),  712–728
  27. On dual Markov processes

    Teor. Veroyatnost. i Primenen., 22:2 (1977),  264–278
  28. An ergodic theorem for Markov processes. I

    Teor. Veroyatnost. i Primenen., 21:2 (1976),  410–416
  29. Elements of potential theory for non-homogeneous Markov processes

    Teor. Veroyatnost. i Primenen., 20:2 (1975),  267–291
  30. The approximation of additive functionals

    Uspekhi Mat. Nauk, 29:6(180) (1974),  183–184
  31. An example of a Martin compactum with a nonnegligible irregular boundary point

    Tr. Mosk. Mat. Obs., 28 (1973),  159–179
  32. Functions harmonic for a Markov process

    Mat. Zametki, 13:4 (1973),  587–596
  33. Functionals of dual Markov processes

    Uspekhi Mat. Nauk, 28:1(169) (1973),  255–256
  34. A Martin compact with a non-negligible irregular boundary point

    Teor. Veroyatnost. i Primenen., 17:2 (1972),  366–370
  35. A property of compactness of families of functions harmonic with respect to a Markov process

    Mat. Zametki, 7:1 (1970),  109–115
  36. On regular points of the Martin boundary

    Teor. Veroyatnost. i Primenen., 15:4 (1970),  637–646
  37. Some notes on adjoint Markov processes

    Teor. Veroyatnost. i Primenen., 15:1 (1970),  108–115
  38. The behaviour of co-exceseive functions near the Martin boundary. II

    Teor. Veroyatnost. i Primenen., 14:3 (1969),  445–451
  39. The behaviour of co-excessive functions near the Martin boundary

    Teor. Veroyatnost. i Primenen., 14:2 (1969),  269–283
  40. On the Martin boundary for a class of Markov processes

    Teor. Veroyatnost. i Primenen., 13:1 (1968),  170–175
  41. On infinitesimal operators of Markov processes

    Izv. Akad. Nauk SSSR Ser. Mat., 31:4 (1967),  731–762
  42. Ergodic theorems for a class of Markov processes

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  493–505
  43. Markov processes with majorized hitting probabilities

    Teor. Veroyatnost. i Primenen., 11:2 (1966),  260–282
  44. Linear differential equations with randomly perturbed parameters

    Izv. Akad. Nauk SSSR Ser. Mat., 29:4 (1965),  783–806
  45. Markov processes with transition probabilities majorized by those of the Wiener process

    Tr. Mosk. Mat. Obs., 13 (1965),  324–346
  46. On the maximum of a Gaussian stationary process

    Teor. Veroyatnost. i Primenen., 10:2 (1965),  386–389
  47. Additive functionals of Markov processes and excessive functions

    Izv. Akad. Nauk SSSR Ser. Mat., 28:1 (1964),  123–146
  48. On Functions Which are Superharmonic for a Markov Process

    Teor. Veroyatnost. i Primenen., 9:1 (1964),  125–133
  49. The Martin boundary for a linear, elliptic, second-order operator

    Izv. Akad. Nauk SSSR Ser. Mat., 27:1 (1963),  45–60
  50. On the Law of Large Numbers for Markov Processes

    Teor. Veroyatnost. i Primenen., 8:2 (1963),  224–228
  51. A class of Markov processes whose exit probabilities are majorized by the exit probabilities of a Wiener process

    Dokl. Akad. Nauk SSSR, 147:2 (1962),  323–326
  52. The Martin boundary for linear, second-order elliptic operators

    Dokl. Akad. Nauk SSSR, 144:2 (1962),  290–292
  53. Kurtosis functions and additive functionals of Markov processes

    Dokl. Akad. Nauk SSSR, 143:2 (1962),  293–296
  54. Localization of the Concept of an Excessive Function Connected with a Markov Process

    Teor. Veroyatnost. i Primenen., 7:2 (1962),  191–196
  55. Continuous additive functionals of Markov processes and excessive functions

    Dokl. Akad. Nauk SSSR, 137:4 (1961),  800–803
  56. Замечание к статье “Гармонические и супергармонические функции, связанные с диффузионными процессами” (Сибирский матем. ж., I, № 2 (1960))

    Sibirsk. Mat. Zh., 2:4 (1961),  639–640
  57. Harmonic and superharmonic functions connected with diffusion processes

    Sibirsk. Mat. Zh., 1:2 (1960),  277–296
  58. Limit Theorems for the Compositions of Distributions in the Lobachevsky Plane and Space

    Teor. Veroyatnost. i Primenen., 4:4 (1959),  432–436
  59. Ergodic Properties of Invariant Markov Chains on Homogeneous Spaces

    Teor. Veroyatnost. i Primenen., 3:2 (1958),  137–152

  60. Errata to the paper in TVP, v. 55, no. 3, p. 446–461

    Teor. Veroyatnost. i Primenen., 56:1 (2011),  205
  61. Letter to the editor

    Mat. Zametki, 87:1 (2010),  156
  62. Letter to the editor

    Teor. Veroyatnost. i Primenen., 35:3 (1990),  616
  63. Letter to the Editor

    Teor. Veroyatnost. i Primenen., 11:4 (1966),  727–728
  64. Errata to the article in v.IV, № 4, 1959

    Teor. Veroyatnost. i Primenen., 5:3 (1960),  376


© Steklov Math. Inst. of RAS, 2026