RUS  ENG
Full version
PEOPLE

Grushin Viktor Vasil'evich

Publications in Math-Net.Ru

  1. Generalized Method of Stationary Phase for the Fourier Transform of a Rapidly Oscillating Function

    Mat. Zametki, 102:6 (2017),  816–827
  2. Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations

    Mat. Zametki, 95:3 (2014),  359–375
  3. Homogenization and dispersion effects in the problem of propagation of waves generated by a localized source

    Trudy Mat. Inst. Steklova, 281 (2013),  170–187
  4. Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators

    Mat. Zametki, 92:2 (2012),  163–180
  5. Generalized Foldy–Wouthuysen transformation and pseudodifferential operators

    TMF, 167:2 (2011),  171–192
  6. Peierls Substitution and the Maslov Operator Method

    Mat. Zametki, 87:4 (2010),  554–571
  7. Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions

    Mat. Zametki, 86:6 (2009),  819–828
  8. Asymptotic Behavior of Eigenvalues of the Laplace Operator in Thin Infinite Tubes

    Mat. Zametki, 85:5 (2009),  687–701
  9. Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator in Thin Closed Tubes

    Mat. Zametki, 83:4 (2008),  503–519
  10. Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions

    Mat. Zametki, 81:3 (2007),  328–334
  11. Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder

    Mat. Zametki, 77:5 (2005),  656–664
  12. On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains

    Mat. Zametki, 75:3 (2004),  360–371
  13. Construction of a parametrix for degenerate elliptic operators by the method of double-scale asymptotic expansions

    Funktsional. Anal. i Prilozhen., 11:2 (1977),  76–77
  14. Some theorems on the singularities of solutions of differential equations with weighted principal symbols

    Mat. Sb. (N.S.), 103(145):1(5) (1977),  37–51
  15. Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols

    Mat. Sb. (N.S.), 88(130):4(8) (1972),  504–521
  16. On the proof of the discreteness of the spectrum of one class of differential operators in $\mathbb{R}^n$

    Funktsional. Anal. i Prilozhen., 5:1 (1971),  71–72
  17. A differential equation without a solution

    Mat. Zametki, 10:2 (1971),  125–128
  18. Singularities of solutions of a certain class of pseudodifferential and degenerating elliptic equations

    Uspekhi Mat. Nauk, 26:1(157) (1971),  221–222
  19. On a class of elliptic pseudodifferential operators degenerate on a submanifold

    Mat. Sb. (N.S.), 84(126):2 (1971),  163–195
  20. Elliptic boundary value problems that are degenerate on a submanifold of the boundary

    Dokl. Akad. Nauk SSSR, 190:2 (1970),  255–258
  21. Pseudodifferential operators on $\mathbf R^n$ with bounded symbols

    Funktsional. Anal. i Prilozhen., 4:3 (1970),  37–50
  22. Degenerating elliptic differential and psevdo-differential operators

    Uspekhi Mat. Nauk, 25:4(154) (1970),  29–56
  23. On a class of hypoelliptic operators

    Mat. Sb. (N.S.), 83(125):3(11) (1970),  456–473
  24. Elliptic pseudodifferential operators on a closed manifold which are degenerate on a submanifold

    Dokl. Akad. Nauk SSSR, 189:1 (1969),  16–19
  25. Boundary value problems for elliptic equations degenerate on the boundary of a domain

    Mat. Sb. (N.S.), 80(122):4(12) (1969),  455–491
  26. On a class of higher order degenerate elliptic equations

    Mat. Sb. (N.S.), 79(121):1(5) (1969),  3–36
  27. Uniformly non-coercive problems for elliptic equations

    Dokl. Akad. Nauk SSSR, 172:4 (1967),  759–762
  28. Uniformly non-elliptic systems of singular integro-differential equations on compact manifolds

    Dokl. Akad. Nauk SSSR, 172:3 (1967),  518–520
  29. Uniformly nonelliptic problems. II

    Mat. Sb. (N.S.), 73(115):1 (1967),  126–154
  30. Uniformly nonelliptic problems. I

    Mat. Sb. (N.S.), 72(114):4 (1967),  602–636
  31. Solutions with isolated singularities for partial differential equations with constant coefficients

    Tr. Mosk. Mat. Obs., 15 (1966),  262–278
  32. On certain local theorems for partial differential equations with constant coefficients

    Tr. Mosk. Mat. Obs., 14 (1965),  200–210
  33. On the existence of non-invariant insoluble subgroups of a finite soluble group

    Mat. Sb. (N.S.), 66(108):4 (1965),  525–550
  34. Behaviour of solutions of differential equations near the boundary

    Dokl. Akad. Nauk SSSR, 158:2 (1964),  264–267
  35. Extension of smoothness to solutions of differential equations of smooth type

    Dokl. Akad. Nauk SSSR, 148:6 (1963),  1241–1244
  36. On Sommerfeld-type conditions for a certain class of partial differential equations

    Mat. Sb. (N.S.), 61(103):2 (1963),  147–174
  37. A problem in the entire space for a certain class of partial differential equations

    Dokl. Akad. Nauk SSSR, 146:6 (1962),  1251–1254
  38. Some theorems on removable singularities

    Uspekhi Mat. Nauk, 17:4(106) (1962),  111–118
  39. On the maximal number of mutually disjoint, pairwise homeomorphic figures which can be packed in 3-space

    Uspekhi Mat. Nauk, 17:3(105) (1962),  163–168
  40. On $Q$-hypo-elliptic equations

    Mat. Sb. (N.S.), 57(99):2 (1962),  233–240
  41. Solutions of partial differential equations with constant coefficients

    Dokl. Akad. Nauk SSSR, 139:1 (1961),  17–19
  42. A property of the solution of a hypoelliptic equation

    Dokl. Akad. Nauk SSSR, 137:4 (1961),  768–771
  43. On the definition of hypo-elliptic equations

    Uspekhi Mat. Nauk, 16:5(101) (1961),  163–166
  44. Fundamental solutions of hypoelliptic equations

    Uspekhi Mat. Nauk, 16:4(100) (1961),  147–153
  45. Isolated singularities of solutions of difference equations

    Uspekhi Mat. Nauk, 16:2(98) (1961),  165–166
  46. Canonical regularization of some classes of functions

    Mat. Sb. (N.S.), 54(96):4 (1961),  397–410
  47. On a sufficient condition for compactness of a family of continuous functions

    Uspekhi Mat. Nauk, 14:4(88) (1959),  165–168

  48. Correction to the paper “Homogenization and dispersion effects in the problem of propagation of waves generated by a localized source” (Proc. Steklov Inst. Math. 281, 161–178 (2013))

    Trudy Mat. Inst. Steklova, 288 (2015),  287
  49. Georgii Evgen'evich Shilov (obituary)

    Uspekhi Mat. Nauk, 31:1(187) (1976),  217–228


© Steklov Math. Inst. of RAS, 2026