RUS  ENG
Full version
PEOPLE

Karapetyants Nikolai Karapetovich

Publications in Math-Net.Ru

  1. Projection Method in the Theory of Integral Operators with Homogeneous Kernels

    Mat. Zametki, 75:2 (2004),  163–172
  2. Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 2,  3–14
  3. Fractional Integrals of Imaginary Order in the Space of Hölder Functions with Polynomial Weight on an Interval

    Mat. Zametki, 74:1 (2003),  52–59
  4. On the pseudospectra of multidimensional integral operators with homogeneous kernels of degree $-n$

    Sibirsk. Mat. Zh., 44:6 (2003),  1199–1216
  5. On the algebra of multidimensional integral operators with homogeneous kernels with variable coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 1,  3–10
  6. Lebesgue points and fractional integrals

    Dokl. Akad. Nauk, 352:2 (1997),  163–166
  7. On the solvability of an integral equation of fractional order in generalized Hölder classes

    Differ. Uravn., 32:8 (1996),  1102–1109
  8. On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  27–33
  9. Fractional integrodifferentiation in Hölder classes of variable order

    Dokl. Akad. Nauk, 339:4 (1994),  439–441
  10. Fractional integrals in the limit case

    Dokl. Akad. Nauk, 333:2 (1993),  136–137
  11. Discrete equations of convolution type with monotone nonlinearity in complex spaces

    Dokl. Akad. Nauk, 322:6 (1992),  1015–1018
  12. On the isomorphism realized by fractional integrals in generalized Nikolʹskii classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9,  49–58
  13. A convolution equation with a power nonlinearity of negative order

    Dokl. Akad. Nauk SSSR, 320:4 (1991),  777–780
  14. The isomorphism realized by fractional integrals in generalized Hölder classes

    Dokl. Akad. Nauk SSSR, 314:2 (1990),  288–291
  15. Integral equations of convolution type with power nonlinearity and systems of such equations

    Dokl. Akad. Nauk SSSR, 311:5 (1990),  1035–1039
  16. A scheme for studying semi-Noethericity of a class of operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 2,  62–65
  17. Discrete equations of convolution type with monotone nonlinearity

    Differ. Uravn., 25:10 (1989),  1777–1784
  18. Fractional integrals with a limit index

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3,  69–72
  19. Discrete equations of convolution type with power nonlinearity

    Dokl. Akad. Nauk SSSR, 296:3 (1987),  521–524
  20. On an analogue of Hörmander's theorem for domains different from $R^n$

    Dokl. Akad. Nauk SSSR, 293:6 (1987),  1294–1297
  21. A nonlinear equation of convolution type

    Differ. Uravn., 22:9 (1986),  1606–1609
  22. Local properties of the solution of the Wiener–Hopf equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 4,  61–67
  23. Radial Riesz potentials on the disk and fractional integration operators

    Dokl. Akad. Nauk SSSR, 263:6 (1982),  1299–1302
  24. Complete continuity of some classes of operators of convolution type with homogeneous kernels

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 11,  71–74
  25. Necessary conditions for the boundedness of an operator with nonnegative quasihomogeneous kernel

    Mat. Zametki, 30:5 (1981),  787–794
  26. On the question of complete continuity of operators of convolution type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11,  41–49
  27. The Wiener–Hopf integral equation with a symbol that has a zero of fractional order

    Differ. Uravn., 13:8 (1977),  1471–1478
  28. A study of the Noethericity of operators with an involution of order $n$, and its application

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11,  15–26
  29. Discrete convolution operators with almost-stabilized coefficients

    Mat. Zametki, 22:3 (1977),  339–344
  30. Singular convolution operators with a discontinuous symbol

    Dokl. Akad. Nauk SSSR, 221:6 (1975),  1260–1263
  31. Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 3,  34–42
  32. Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. I, II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 2,  43–54
  33. Singular convolution operators with discontinuous symbol

    Sibirsk. Mat. Zh., 16:1 (1975),  44–61
  34. On a class of discrete convolution operators with oscillating coefficients

    Dokl. Akad. Nauk SSSR, 216:1 (1974),  28–31
  35. Singular integral equations with Carleman shift in the case of discontinuous coefficients, and the investigation of the Noetherian nature of a class of linear operators with involution

    Dokl. Akad. Nauk SSSR, 211:2 (1973),  281–284
  36. Singular integral operators with shift on an open contour

    Dokl. Akad. Nauk SSSR, 204:3 (1972),  536–539
  37. On a new approach to the investigation of singular integral equations with shift

    Dokl. Akad. Nauk SSSR, 202:2 (1972),  273–276
  38. A certain boundary value problem with a shift in the theory of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11,  18–22
  39. On discrete Wiener–Hopf operators with oscillating coefficients

    Dokl. Akad. Nauk SSSR, 200:1 (1971),  17–20
  40. On a class of integral equations of convolution type and its applications

    Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),  714–726
  41. The index of certain classes of integral operators

    Dokl. Akad. Nauk SSSR, 194:3 (1970),  504–507
  42. A certain class of convolution type integral equations, and its application

    Dokl. Akad. Nauk SSSR, 193:5 (1970),  981–984
  43. Discrete convolution type equations in a cetain exceptional case

    Sibirsk. Mat. Zh., 11:1 (1970),  80–90
  44. The normalization of discrete equations of convolution type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 12,  45–52
  45. Application of the normalization method to a class of infinite systems of linear algebraic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10,  39–49
  46. Integral equations of the convolution type in a class of generalized functions

    Sibirsk. Mat. Zh., 7:3 (1966),  531–545

  47. Sergeĭ Mikhaĭlovich Nikol'skiĭ (on the occasion of his hundredth birthday)

    Vladikavkaz. Mat. Zh., 7:2 (2005),  5–10


© Steklov Math. Inst. of RAS, 2026