|
|
Publications in Math-Net.Ru
-
Projection Method in the Theory of Integral Operators with Homogeneous Kernels
Mat. Zametki, 75:2 (2004), 163–172
-
Spherical convolution operators with a power-logarithmic kernel in generalized Hölder spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 2, 3–14
-
Fractional Integrals of Imaginary Order in the Space of Hölder Functions with Polynomial Weight on an Interval
Mat. Zametki, 74:1 (2003), 52–59
-
On the pseudospectra of multidimensional integral operators with homogeneous kernels of degree $-n$
Sibirsk. Mat. Zh., 44:6 (2003), 1199–1216
-
On the algebra of multidimensional integral operators with homogeneous kernels with variable coefficients
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 1, 3–10
-
Lebesgue points and fractional integrals
Dokl. Akad. Nauk, 352:2 (1997), 163–166
-
On the solvability of an integral equation of fractional order in generalized Hölder classes
Differ. Uravn., 32:8 (1996), 1102–1109
-
On a necessary condition for the convergence of averages at Lebesgue $p$-points of functions from $L_p$
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9, 27–33
-
Fractional integrodifferentiation in Hölder classes of variable order
Dokl. Akad. Nauk, 339:4 (1994), 439–441
-
Fractional integrals in the limit case
Dokl. Akad. Nauk, 333:2 (1993), 136–137
-
Discrete equations of convolution type with monotone nonlinearity
in complex spaces
Dokl. Akad. Nauk, 322:6 (1992), 1015–1018
-
On the isomorphism realized by fractional integrals in generalized Nikolʹskii classes
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9, 49–58
-
A convolution equation with a power nonlinearity of negative
order
Dokl. Akad. Nauk SSSR, 320:4 (1991), 777–780
-
The isomorphism realized by fractional integrals in generalized Hölder classes
Dokl. Akad. Nauk SSSR, 314:2 (1990), 288–291
-
Integral equations of convolution type with power nonlinearity and
systems of such equations
Dokl. Akad. Nauk SSSR, 311:5 (1990), 1035–1039
-
A scheme for studying semi-Noethericity of a class of operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 2, 62–65
-
Discrete equations of convolution type with monotone nonlinearity
Differ. Uravn., 25:10 (1989), 1777–1784
-
Fractional integrals with a limit index
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 3, 69–72
-
Discrete equations of convolution type with power nonlinearity
Dokl. Akad. Nauk SSSR, 296:3 (1987), 521–524
-
On an analogue of Hörmander's theorem for domains different from $R^n$
Dokl. Akad. Nauk SSSR, 293:6 (1987), 1294–1297
-
A nonlinear equation of convolution type
Differ. Uravn., 22:9 (1986), 1606–1609
-
Local properties of the solution of the Wiener–Hopf equation
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 4, 61–67
-
Radial Riesz potentials on the disk and fractional integration operators
Dokl. Akad. Nauk SSSR, 263:6 (1982), 1299–1302
-
Complete continuity of some classes of operators of convolution type with homogeneous kernels
Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 11, 71–74
-
Necessary conditions for the boundedness of an operator with nonnegative quasihomogeneous kernel
Mat. Zametki, 30:5 (1981), 787–794
-
On the question of complete continuity of operators of convolution type
Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 11, 41–49
-
The Wiener–Hopf integral equation with a symbol that has a zero of fractional order
Differ. Uravn., 13:8 (1977), 1471–1478
-
A study of the Noethericity of operators with an involution of order $n$, and its application
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11, 15–26
-
Discrete convolution operators with almost-stabilized coefficients
Mat. Zametki, 22:3 (1977), 339–344
-
Singular convolution operators with a discontinuous symbol
Dokl. Akad. Nauk SSSR, 221:6 (1975), 1260–1263
-
Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 3, 34–42
-
Singular integral operators with Carleman shift in the case of piecewise continuous coefficients. I, II
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 2, 43–54
-
Singular convolution operators with discontinuous symbol
Sibirsk. Mat. Zh., 16:1 (1975), 44–61
-
On a class of discrete convolution operators with oscillating coefficients
Dokl. Akad. Nauk SSSR, 216:1 (1974), 28–31
-
Singular integral equations with Carleman shift in the case of discontinuous coefficients, and the investigation of the Noetherian nature of a class of linear operators with involution
Dokl. Akad. Nauk SSSR, 211:2 (1973), 281–284
-
Singular integral operators with shift on an open contour
Dokl. Akad. Nauk SSSR, 204:3 (1972), 536–539
-
On a new approach to the investigation of singular integral equations with shift
Dokl. Akad. Nauk SSSR, 202:2 (1972), 273–276
-
A certain boundary value problem with a shift in the theory of analytic functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11, 18–22
-
On discrete Wiener–Hopf operators with oscillating coefficients
Dokl. Akad. Nauk SSSR, 200:1 (1971), 17–20
-
On a class of integral equations of convolution type and its applications
Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971), 714–726
-
The index of certain classes of integral operators
Dokl. Akad. Nauk SSSR, 194:3 (1970), 504–507
-
A certain class of convolution type integral equations, and its application
Dokl. Akad. Nauk SSSR, 193:5 (1970), 981–984
-
Discrete convolution type equations in a cetain exceptional case
Sibirsk. Mat. Zh., 11:1 (1970), 80–90
-
The normalization of discrete equations of convolution type
Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 12, 45–52
-
Application of the normalization method to a class of infinite systems of linear algebraic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 10, 39–49
-
Integral equations of the convolution type in a class of generalized functions
Sibirsk. Mat. Zh., 7:3 (1966), 531–545
-
Sergeĭ Mikhaĭlovich Nikol'skiĭ (on the occasion of his hundredth birthday)
Vladikavkaz. Mat. Zh., 7:2 (2005), 5–10
© , 2026