RUS  ENG
Full version
PEOPLE

Gorelov Vasilii Aleksandrovich

Publications in Math-Net.Ru

  1. Development of Siegel–Shidlovskii method in transcendental number theory

    Chebyshevskii Sb., 26:4 (2025),  7–32
  2. On algebraic properties of functions related to hypergeometric functions

    Mat. Zametki, 117:3 (2025),  365–374
  3. About one Briot–Bouqet equation

    Chebyshevskii Sb., 25:3 (2024),  343–350
  4. On Algebraic Properties of Integrals of Products of Some Hypergeometric Functions

    Mat. Zametki, 115:2 (2024),  208–218
  5. On algebraic identities between solution matrices of generalized hypergeometric equations

    Chebyshevskii Sb., 21:1 (2020),  135–144
  6. On algebraic identities between solution matrices of Bessel's and Kummer's equations

    Sib. Èlektron. Mat. Izv., 16 (2019),  258–262
  7. On contiguity relations for generalized hypergeometric functions

    Probl. Anal. Issues Anal., 7(25):2 (2018),  39–46
  8. On the Algebraic Properties of Solutions of Inhomogeneous Hypergeometric Equations

    Mat. Zametki, 99:5 (2016),  658–672
  9. On the Algebraic Independence of Values of Generalized Hypergeometric Functions

    Mat. Zametki, 94:1 (2013),  94–108
  10. On Algebraic Identities between Generalized Hypergeometric Functions

    Mat. Zametki, 88:4 (2010),  511–516
  11. On the weakened Siegel's conjecture

    Fundam. Prikl. Mat., 11:6 (2005),  33–39
  12. On the Structure of the Set of $E$-Functions Satisfying Linear Differential Equations of Second Order

    Mat. Zametki, 78:3 (2005),  331–348
  13. On the Siegel Conjecture for Second-Order Homogeneous Linear Differential Equations

    Mat. Zametki, 75:4 (2004),  549–565
  14. Algebraic independence of the values of $E$-functions at singular points and Siegel's conjecture

    Mat. Zametki, 67:2 (2000),  174–190
  15. Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$

    Fundam. Prikl. Mat., 4:2 (1998),  751–755
  16. Estimates for the measures of algebraic independence of the values of $E$-functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  6–11
  17. Estimates for the measures of algebraic independence of the values of $\mathrm{E}$-functions

    Sibirsk. Mat. Zh., 31:5 (1990),  31–45


© Steklov Math. Inst. of RAS, 2026