RUS  ENG
Full version
PEOPLE

Uskova Natalya Borisovna

Publications in Math-Net.Ru

  1. The method of equivalent operators in the study of one class of first-order differential operators with constant operator coefficient

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 242 (2025),  11–21
  2. On equivalent operators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024),  3–14
  3. On the algebra of integral operators with involution

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  41–49
  4. On bounded difference operators with involution

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229 (2023),  12–21
  5. Application of the method of similar operators to some classes of difference operators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023),  14–27
  6. On spectral properties of one difference operator with involution

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 208 (2022),  15–23
  7. On smoothing the operator coefficient of a first-order differential operator in a Banach space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206 (2022),  3–14
  8. Method of similar operators in the problem of bi-invariant subspaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022),  3–15
  9. Spectral properties of one infinite tridiagonal matrix

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  31–42
  10. On estimates of eigenvalues of infinite block tridiagonal matrices

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  118–126
  11. On matrices with summable diagonals

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194 (2021),  23–37
  12. The method of similar operators in the spectral analysis of infinite operator matrices. Examples II

    Applied Mathematics & Physics, 53:3 (2021),  205–212
  13. On the spectral analysis of a differential operator with an involution and general boundary conditions

    Eurasian Math. J., 11:2 (2020),  30–39
  14. The method of similar operators in the spectral analysis of infinite operator matrices. Examples I.

    Applied Mathematics & Physics, 52:3 (2020),  185–194
  15. The method of similar operators in the spectral analysis of infinite operator matrices

    Applied Mathematics & Physics, 52:2 (2020),  71–85
  16. Method of similar operators in the study of spectral properties of perturbed first-order differential operators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019),  3–18
  17. Spectral properties of first-order differential operators with an involution and groups of operators

    Sib. Èlektron. Mat. Izv., 16 (2019),  1091–1132
  18. The matrix analysis of spectral projections for the perturbed self-adjoint operators

    Sib. Èlektron. Mat. Izv., 16 (2019),  369–405
  19. Fourier method for first order differential equations with involution and groups of operators

    Ufimsk. Mat. Zh., 10:3 (2018),  11–34
  20. The theorem on the decomposition of linear operators and the asymptotic behavior of the eigenvalues of difference operators with a growing potential

    Sib. J. Pure and Appl. Math., 18:1 (2018),  91–106
  21. Method of similar operators in research of spectral properties of difference operators with growthing potential

    Sib. Èlektron. Mat. Izv., 14 (2017),  673–689
  22. The asymptotic of eigenvalues for difference operator with growing potentia

    Mathematical Physics and Computer Simulation, 20:4 (2017),  6–17
  23. Spectral analysis of a class of difference operators with growing potential

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  395–402
  24. The similar operator method and spectral properties of the difference operator with order potential

    Applied Mathematics & Physics, 44:20 (2016),  42–49
  25. On spectral properties of Sturm–Liouville operator with matrix potential

    Ufimsk. Mat. Zh., 7:3 (2015),  88–99
  26. On the method of similar operators in Banach algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3,  79–85
  27. On a Result of R. Turner

    Mat. Zametki, 76:6 (2004),  905–917
  28. Estimates for spectral projections of perturbed selfadjoint operators

    Sibirsk. Mat. Zh., 41:3 (2000),  712–721
  29. Estimates for spectral expansions of the eigenvectors of some classes of perturbed differential operators

    Differ. Uravn., 33:4 (1997),  564–566
  30. A Pearcy–Shields problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 10,  79–81
  31. On the spectrum of some classes of differential operators

    Differ. Uravn., 30:2 (1994),  350–352


© Steklov Math. Inst. of RAS, 2026