|
|
Publications in Math-Net.Ru
-
Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space
Mat. Zametki, 84:4 (2008), 577–582
-
Minimal surfaces in standard three-dimensional geometry $Sol^3$
Zh. Mat. Fiz. Anal. Geom., 2:1 (2006), 104–110
-
The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 7, 43–48
-
Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ è $H^2 \times R$
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 9, 46–52
-
Nil-Manifolds Cannot be Immersed as Hypersurfaces in Euclidean Spaces
Mat. Zametki, 76:6 (2004), 868–873
-
A Version of the Ruh–Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$
Mat. Zametki, 73:1 (2003), 92–105
-
Tantrices of curves in spaces of constant curature $S^3$ and $H^3$
Mat. Fiz. Anal. Geom., 9:1 (2002), 66–78
-
Surfaces with planar lines of curvature in Lobachevskii space
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3, 39–46
-
Joachimsthal surfaces in $S^3$
Mat. Zametki, 67:2 (2000), 221–229
-
Generatrix of catenoid of space 3-form
Mat. Fiz. Anal. Geom., 6:1/2 (1999), 81–99
-
On minimal submanifolds of constant curvature in Euclidean space
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 9, 64–65
-
Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
Mat. Fiz. Anal. Geom., 4:1/2 (1997), 133–144
-
Minimal surfaces $\mathbf R^5$ whose Gauss images have constant curvature
Mat. Zametki, 35:6 (1984), 927–932
© , 2026