RUS  ENG
Full version
PEOPLE

Masal'tsev L A

Publications in Math-Net.Ru

  1. Isometric Lagrangian Immersion of Horocycles of the Hyperbolic Plane in Complex Space

    Mat. Zametki, 84:4 (2008),  577–582
  2. Minimal surfaces in standard three-dimensional geometry $Sol^3$

    Zh. Mat. Fiz. Anal. Geom., 2:1 (2006),  104–110
  3. The bitangent Bianchi transformation of a submanifold $H^n$ of constant negative curvature of the Euclidean space $R^{2n}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 7,  43–48
  4. Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ è $H^2 \times R$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 9,  46–52
  5. Nil-Manifolds Cannot be Immersed as Hypersurfaces in Euclidean Spaces

    Mat. Zametki, 76:6 (2004),  868–873
  6. A Version of the Ruh–Vilms Theorem for Surfaces of Constant Mean Curvature in $S^3$

    Mat. Zametki, 73:1 (2003),  92–105
  7. Tantrices of curves in spaces of constant curature $S^3$ and $H^3$

    Mat. Fiz. Anal. Geom., 9:1 (2002),  66–78
  8. Surfaces with planar lines of curvature in Lobachevskii space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3,  39–46
  9. Joachimsthal surfaces in $S^3$

    Mat. Zametki, 67:2 (2000),  221–229
  10. Generatrix of catenoid of space 3-form

    Mat. Fiz. Anal. Geom., 6:1/2 (1999),  81–99
  11. On minimal submanifolds of constant curvature in Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 9,  64–65
  12. Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$

    Mat. Fiz. Anal. Geom., 4:1/2 (1997),  133–144
  13. Minimal surfaces $\mathbf R^5$ whose Gauss images have constant curvature

    Mat. Zametki, 35:6 (1984),  927–932


© Steklov Math. Inst. of RAS, 2026