RUS  ENG
Full version
PEOPLE

Abilova Farida Vladimirovna

Publications in Math-Net.Ru

  1. Sharp estimates for the convergence rate of Fourier series in two variables and their applications

    Zh. Vychisl. Mat. Mat. Fiz., 58:10 (2018),  1596–1603
  2. Estimates for the remainders of certain quadrature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018),  497–503
  3. On sharp estimates of the convergence of double Fourier–Bessel series

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1765–1770
  4. Sharp estimates for the convergence rate of Fourier–Bessel series

    Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  917–927
  5. Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$

    Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013),  1622–1628
  6. Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1419–1426
  7. Some issues concerning approximations of functions by Fourier–Bessel sums

    Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1051–1057
  8. Some inverse theorems for approximation of functions by Fourier–Laguerre sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9,  3–9
  9. Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  999–1004
  10. On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1158–1166
  11. Sharp estimates for the convergence rate of Fourier series in terms of orthogonal polynomials in $L_2((a,b),p(x))$

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  966–980
  12. Some remarks concerning the Fourier transform in the space $L_2(\mathbb R^n)$

    Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2113–2120
  13. Some remarks concerning the Fourier transform in the space $L_2(\mathbb R)$

    Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  939–945
  14. Some problems of the approximation of functions by Fourier–Hermite sums in the space $L^2(\mathbb R;e^{-x^2})$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 1,  3–12
  15. Problems in the Approximation of $2\pi$-Periodic Functions by Fourier Sums in the Space $L_2(2\pi)$

    Mat. Zametki, 76:6 (2004),  803–811
  16. A quadrature formula

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  451–458
  17. Approximation of functions by Fourier–Bessel sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 8,  3–9
  18. On the convergence of multiple Fourier–Hermite series

    Zh. Vychisl. Mat. Mat. Fiz., 41:11 (2001),  1637–1657
  19. On some issues related to convergence of multiple Fourier series

    Zh. Vychisl. Mat. Mat. Fiz., 39:12 (1999),  1951–1961
  20. Approximation of functions by algebraic polynomials in the mean

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3,  61–63


© Steklov Math. Inst. of RAS, 2026