|
|
Publications in Math-Net.Ru
-
Estimates for the remainders of certain quadrature formulas
Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018), 497–503
-
On sharp estimates of the convergence of double Fourier–Bessel series
Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1765–1770
-
Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials
Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015), 1109–1117
-
Sharp estimates for the convergence rate of Fourier–Bessel series
Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015), 917–927
-
Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1622–1628
-
Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013), 1419–1426
-
Convergence rate estimates for “spherical” partial sums of double Fourier series
Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013), 1233–1240
-
Some issues concerning approximations of functions by Fourier–Bessel sums
Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1051–1057
-
Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials
Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 1952–1958
-
Estimation of the remainder of a cubature formula on a Chebyshev grid
Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1373–1377
-
Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions
Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012), 1185–1191
-
Estimates for the Fourier–Bessel transforms of multivariate functions
Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 980–989
-
Some inverse theorems for approximation of functions by Fourier–Laguerre sums
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9, 3–9
-
Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$
Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010), 999–1004
-
Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$
Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1364–1368
-
On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009), 1158–1166
-
Sharp estimates for the convergence rate of Fourier series in terms of orthogonal polynomials in $L_2((a,b),p(x))$
Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009), 966–980
-
Some remarks concerning the Fourier transform in the space $L_2(\mathbb R^n)$
Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008), 2113–2120
-
Some remarks concerning the Fourier transform in the space $L_2(\mathbb R)$
Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008), 939–945
-
On expansions of functions of two variables in mixed Fourier–Jacobi series and their application for estimation of errors of cubature formulas
Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007), 1298–1307
-
Some problems of the approximation of functions by Fourier–Hermite sums in the space
$L^2(\mathbb R;e^{-x^2})$
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 1, 3–12
-
Some estimates for the error in mixed Fourier–Bessel expansions of functions of two variables
Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006), 1545–1565
-
Problems in the Approximation of $2\pi$-Periodic Functions by Fourier Sums in the Space $L_2(2\pi)$
Mat. Zametki, 76:6 (2004), 803–811
-
Some problems on expansion of functions in double Fourier–Bessel series
Zh. Vychisl. Mat. Mat. Fiz., 44:12 (2004), 2128–2149
-
Some problems concerning expansions of functions in double Fourier–Laguerre–Jacobi series
Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004), 1751–1769
-
Some problems of expansion of functions in double Fourier–Hermite–Jacobi series
Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004), 1596–1607
-
Some convergence problems of double Fourier–Laguerre–Hermite series
Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004), 213–230
-
Estimates of residual terms of multiple Fourier–Chebyshev series and the Chebyshev type cubature formulas
Zh. Vychisl. Mat. Mat. Fiz., 43:5 (2003), 643–663
-
A quadrature formula
Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 451–458
-
Approximation of functions by Fourier–Bessel sums
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 8, 3–9
-
On the convergence of multiple Fourier–Hermite series
Zh. Vychisl. Mat. Mat. Fiz., 41:11 (2001), 1637–1657
-
On some issues related to convergence of multiple Fourier series
Zh. Vychisl. Mat. Mat. Fiz., 39:12 (1999), 1951–1961
-
Approximation of functions by algebraic polynomials in the mean
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3, 61–63
-
Approximation of functions by Fourier–Laguerre sums
Mat. Zametki, 57:2 (1995), 163–170
-
Approximation of functions in the space $L_2(\mathbb R^N;\exp(-|x|^2))$
Mat. Zametki, 57:1 (1995), 3–19
-
A note on a theorem of Lorentz
Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 9, 3–5
-
The order of the approximation of continuous functions by the arithmetic means of partial sums of a Fourier–Hermite series
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3, 3–9
-
The coefficients of the Fourier–Hermite series of continuous functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 12, 3–8
-
Approximation of differentiable functions by Fourier–Hermite sums
Mat. Zametki, 6:1 (1969), 35–46
-
Approximation of differentiable functions by Fourier-Hermite sums
Dokl. Akad. Nauk SSSR, 182:6 (1968), 1247–1248
© , 2026