RUS  ENG
Full version
PEOPLE

Abilov Vladimir Abilovich

Publications in Math-Net.Ru

  1. Estimates for the remainders of certain quadrature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 58:4 (2018),  497–503
  2. On sharp estimates of the convergence of double Fourier–Bessel series

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1765–1770
  3. Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1109–1117
  4. Sharp estimates for the convergence rate of Fourier–Bessel series

    Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  917–927
  5. Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$

    Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013),  1622–1628
  6. Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$

    Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1419–1426
  7. Convergence rate estimates for “spherical” partial sums of double Fourier series

    Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013),  1233–1240
  8. Some issues concerning approximations of functions by Fourier–Bessel sums

    Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1051–1057
  9. Sharp estimates for the convergence rate of “hyperbolic” partial sums of double fourier series in orthogonal polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  1952–1958
  10. Estimation of the remainder of a cubature formula on a Chebyshev grid

    Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012),  1373–1377
  11. Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions

    Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012),  1185–1191
  12. Estimates for the Fourier–Bessel transforms of multivariate functions

    Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012),  980–989
  13. Some inverse theorems for approximation of functions by Fourier–Laguerre sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 9,  3–9
  14. Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  999–1004
  15. Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$

    Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1364–1368
  16. On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1158–1166
  17. Sharp estimates for the convergence rate of Fourier series in terms of orthogonal polynomials in $L_2((a,b),p(x))$

    Zh. Vychisl. Mat. Mat. Fiz., 49:6 (2009),  966–980
  18. Some remarks concerning the Fourier transform in the space $L_2(\mathbb R^n)$

    Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2113–2120
  19. Some remarks concerning the Fourier transform in the space $L_2(\mathbb R)$

    Zh. Vychisl. Mat. Mat. Fiz., 48:6 (2008),  939–945
  20. On expansions of functions of two variables in mixed Fourier–Jacobi series and their application for estimation of errors of cubature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007),  1298–1307
  21. Some problems of the approximation of functions by Fourier–Hermite sums in the space $L^2(\mathbb R;e^{-x^2})$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 1,  3–12
  22. Some estimates for the error in mixed Fourier–Bessel expansions of functions of two variables

    Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006),  1545–1565
  23. Problems in the Approximation of $2\pi$-Periodic Functions by Fourier Sums in the Space $L_2(2\pi)$

    Mat. Zametki, 76:6 (2004),  803–811
  24. Some problems on expansion of functions in double Fourier–Bessel series

    Zh. Vychisl. Mat. Mat. Fiz., 44:12 (2004),  2128–2149
  25. Some problems concerning expansions of functions in double Fourier–Laguerre–Jacobi series

    Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1751–1769
  26. Some problems of expansion of functions in double Fourier–Hermite–Jacobi series

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1596–1607
  27. Some convergence problems of double Fourier–Laguerre–Hermite series

    Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  213–230
  28. Estimates of residual terms of multiple Fourier–Chebyshev series and the Chebyshev type cubature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 43:5 (2003),  643–663
  29. A quadrature formula

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  451–458
  30. Approximation of functions by Fourier–Bessel sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 8,  3–9
  31. On the convergence of multiple Fourier–Hermite series

    Zh. Vychisl. Mat. Mat. Fiz., 41:11 (2001),  1637–1657
  32. On some issues related to convergence of multiple Fourier series

    Zh. Vychisl. Mat. Mat. Fiz., 39:12 (1999),  1951–1961
  33. Approximation of functions by algebraic polynomials in the mean

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 3,  61–63
  34. Approximation of functions by Fourier–Laguerre sums

    Mat. Zametki, 57:2 (1995),  163–170
  35. Approximation of functions in the space $L_2(\mathbb R^N;\exp(-|x|^2))$

    Mat. Zametki, 57:1 (1995),  3–19
  36. A note on a theorem of Lorentz

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 9,  3–5
  37. The order of the approximation of continuous functions by the arithmetic means of partial sums of a Fourier–Hermite series

    Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3,  3–9
  38. The coefficients of the Fourier–Hermite series of continuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 12,  3–8
  39. Approximation of differentiable functions by Fourier–Hermite sums

    Mat. Zametki, 6:1 (1969),  35–46
  40. Approximation of differentiable functions by Fourier-Hermite sums

    Dokl. Akad. Nauk SSSR, 182:6 (1968),  1247–1248


© Steklov Math. Inst. of RAS, 2026