RUS  ENG
Full version
PEOPLE

Gorbachev Dmitry Viktorovich

Publications in Math-Net.Ru

  1. Scattering of a plane sound wave by a liquid body of complex shape

    Chebyshevskii Sb., 26:1 (2025),  164–180
  2. Method for solving the Delsarte problem for weighted designs on compact homogeneous spaces

    Chebyshevskii Sb., 25:4 (2024),  53–73
  3. Multidimensional weighted inequalities for entire functions of exponential type

    Mat. Zametki, 116:5 (2024),  809–813
  4. New conditions for the convergence of a weak greedy algorithm

    Mat. Zametki, 116:3 (2024),  566–570
  5. Boas conjecture on the axis for the Fourier–Dunkl transform and its generalization

    Chebyshevskii Sb., 24:2 (2023),  141–153
  6. Logan–Hermite Extremal Problems for Entire Functions of Exponential Type

    Mat. Zametki, 113:1 (2023),  138–143
  7. Some results for weighted Bernstein–Nikol'skii constants

    Chebyshevskii Sb., 23:5 (2022),  45–56
  8. Weighted Carleman inequality for fractional gradient

    Chebyshevskii Sb., 23:4 (2022),  152–156
  9. Boas conjecture on the axis for the Fourier–Dunkl transform and its generalization

    Chebyshevskii Sb., 23:4 (2022),  39–51
  10. About three-dimensional nets of Smolyak III

    Chebyshevskii Sb., 23:3 (2022),  249–254
  11. Refinement of the mean angle estimation in the Feyesh Toth problem

    Chebyshevskii Sb., 23:3 (2022),  245–248
  12. Bernstein Inequality in $L^p$ on the Line with Power Weight for $p>0$

    Mat. Zametki, 111:2 (2022),  300–303
  13. Refinement of Bernstein–Nikolskii constant for the sphere with Dunkl weight in the case of octahedron group

    Chebyshevskii Sb., 22:5 (2021),  354–358
  14. Sharp Bernstein–Nikolskii inequalities for polynomials and entire functions of exponential type

    Chebyshevskii Sb., 22:5 (2021),  58–110
  15. Nikol'skii constants for compact homogeneous spaces

    Chebyshevskii Sb., 22:4 (2021),  100–113
  16. Approximation by spherical polynomials in $L^{p}$ for $p<1$

    Chebyshevskii Sb., 22:3 (2021),  453–456
  17. About three-dimensional nets of Smolyak II

    Chebyshevskii Sb., 22:3 (2021),  100–121
  18. Nikolskii–Bernstein constants in $L^{p}$ on the sphere with Dunkl weight

    Chebyshevskii Sb., 21:4 (2020),  302–307
  19. Novel bounds of algebraic Nikol'skii constant

    Chebyshevskii Sb., 21:4 (2020),  45–55
  20. Markov–Bernstein–Nikol'skii constants for polynomials in $L^{p}$-space with the Gegenbauer weight

    Chebyshevskii Sb., 21:4 (2020),  29–44
  21. Letter to the Editor

    Chebyshevskii Sb., 21:3 (2020),  336–338
  22. Bounds of the Nikol'skii Polynomial Constants in $L^{p}$ with Gegenbauer Weight

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  126–137
  23. Extremal Nikolskii–Bernstein- and Turán-type problems for Dunkl transform

    Chebyshevskii Sb., 20:3 (2019),  394–400
  24. About three-dimensional nets of Smolyak I

    Chebyshevskii Sb., 20:3 (2019),  193–219
  25. Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type

    Chebyshevskii Sb., 20:3 (2019),  143–153
  26. New approach to searching for string median and visualization of string clusters

    Chebyshevskii Sb., 20:2 (2019),  93–107
  27. Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure

    Chebyshevskii Sb., 20:2 (2019),  82–92
  28. Weighted inequalities for Dunkl–Riesz potential

    Chebyshevskii Sb., 20:1 (2019),  131–147
  29. Fractional Smoothness in $L^p$ with Dunkl Weight and Its Applications

    Mat. Zametki, 106:4 (2019),  537–561
  30. A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight

    Mat. Zametki, 105:5 (2019),  666–684
  31. Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem

    Mat. Sb., 210:6 (2019),  56–81
  32. Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  75–87
  33. On the doubling condition for non-negative positive definite functions on on the half-line with power weight

    Chebyshevskii Sb., 19:2 (2018),  90–100
  34. On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type

    Chebyshevskii Sb., 19:2 (2018),  80–89
  35. Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces

    Chebyshevskii Sb., 19:2 (2018),  67–79
  36. The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm–Liouville operator

    Chebyshevskii Sb., 19:1 (2018),  57–78
  37. Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  92–103
  38. Some extremal problems of harmonic analysis and approximation theory

    Chebyshevskii Sb., 18:4 (2017),  140–167
  39. On the approximation of the flow of events for a Poisson

    Chebyshevskii Sb., 18:2 (2017),  222–234
  40. Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator

    Chebyshevskii Sb., 18:2 (2017),  34–53
  41. Some Extremal Problems for the Fourier Transform on the Hyperboloid

    Mat. Zametki, 102:4 (2017),  480–491
  42. The Delsarte Extremal Problem for the Jacobi Transform

    Mat. Zametki, 100:5 (2016),  677–686
  43. Approximation in $L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator

    Mat. Zametki, 100:4 (2016),  519–530
  44. Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  136–152
  45. Bohman extremal problem for the Jacobi transform

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  126–135
  46. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    Mat. Sb., 206:8 (2015),  63–98
  47. Bohman extremal problem for the Dunkl transform

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  115–123
  48. Optimal argument in the sharp Jackson inequality in the space $L_2$ with hyperbolic weight

    Mat. Zametki, 96:5 (2014),  904–913
  49. An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin $L_2$-inequality

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  83–91
  50. Minimal Weighted $4$-Designs on the Sphere $S^2$

    Mat. Zametki, 91:5 (2012),  787–790
  51. On an extremal problem for periodic functions with small support

    Mat. Zametki, 80:6 (2006),  940–942
  52. An extremal problem for even positive definite entire functions of exponential type

    Mat. Zametki, 80:5 (2006),  712–717
  53. Some extremal problems for periodic functions with conditions on their values and Fourier coefficients

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:2 (2005),  92–111
  54. An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:2 (2005),  72–91
  55. Turán Extremal Problem for Periodic Functions with Small Support and Its Applications

    Mat. Zametki, 76:5 (2004),  688–700
  56. A Sharpening of the Taikov Lower Bound in the Inequality between the $C$- and $L$-Norms for Trigonometric Polynomials

    Mat. Zametki, 74:1 (2003),  132–134
  57. An Extremum Problem for Periodic Functions with Small Support

    Mat. Zametki, 73:5 (2003),  773–778
  58. Extremum Problem for Periodic Functions Supported in a Ball

    Mat. Zametki, 69:3 (2001),  346–352
  59. Extremum problems for entire functions of exponential spherical type

    Mat. Zametki, 68:2 (2000),  179–187
  60. An extremum problem for polynomials related to codes and designs

    Mat. Zametki, 67:4 (2000),  508–513
  61. The sharp Jackson inequality in the space $L_p$ on the sphere

    Mat. Zametki, 66:1 (1999),  50–62
  62. An extremum problem on a class of differentiable functions of several variables

    Mat. Zametki, 62:2 (1997),  192–205
  63. Construction of the extremal function for a functional on the class $H_\omega^{(n)}$

    Mat. Zametki, 61:4 (1997),  519–529

  64. Valery Ivanovich Ivanov (7.07.1951 — 2.03.2025)

    Chebyshevskii Sb., 26:1 (2025),  258–262
  65. Delsarte problem for 4-designs on the unit 3-sphere

    Chebyshevskii Sb., 23:4 (2022),  157–161


© Steklov Math. Inst. of RAS, 2026