RUS  ENG
Full version
PEOPLE

Rybakov Vyacheslav Ivanovich

Publications in Math-Net.Ru

  1. Asplund Space: Another Criterion

    Mat. Zametki, 82:1 (2007),  118–124
  2. Banach Spaces with the PC Property

    Mat. Zametki, 76:4 (2004),  568–577
  3. Yet Another Class of Namioka Spaces

    Mat. Zametki, 73:2 (2003),  263–268
  4. Pettis integrability of Stone transforms

    Mat. Zametki, 60:2 (1996),  238–253
  5. On convergence on the boundary of the unit ball in dual space

    Mat. Zametki, 59:5 (1996),  753–758
  6. On resultant-preserving functionals

    Mat. Zametki, 54:1 (1993),  65–70
  7. A certain refinement of a theorem of Namioka and $m$-admissible sets

    Mat. Zametki, 35:4 (1984),  599–615
  8. Banach spaces with $k$- and $m$-admissible sets

    Mat. Zametki, 33:1 (1983),  49–64
  9. Universal measurability of the identity mapping of a Banach space in certain topologies

    Mat. Zametki, 23:2 (1978),  305–314
  10. Certain properties of measures on a normed space possessing the property $RN$

    Mat. Zametki, 21:1 (1977),  81–92
  11. Certain cases of the reduction of the study of weakly integrable functions to the study of Pettis-integrable functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 11,  98–101
  12. A generalization of the Bochner integral to locally convex spaces

    Mat. Zametki, 18:4 (1975),  577–588
  13. The separation from a vector measure of the part representable by a Bochner integral

    Mat. Zametki, 17:5 (1975),  797–808
  14. Vector measures with values in locally convex spaces

    Funktsional. Anal. i Prilozhen., 7:4 (1973),  95–96
  15. On conditional mathematical expectations for functions integrable in the Pettis sense

    Mat. Zametki, 10:5 (1971),  565–570
  16. Theorem of Bartle, Dunford, and Schwartz concerning vector measures

    Mat. Zametki, 7:2 (1970),  247–254
  17. The Radon–Nikodym theorem and integral representation of vector measures

    Dokl. Akad. Nauk SSSR, 180:2 (1968),  282–285
  18. Vector-valued measures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 12,  92–101


© Steklov Math. Inst. of RAS, 2026