RUS  ENG
Full version
PEOPLE

Khasanov Aknazar Bekdurdievich

Publications in Math-Net.Ru

  1. On the AB system with a self-consistent source

    Algebra i Analiz, 37:4 (2025),  149–165
  2. Integration of a non-linear Hirota type equation with additional terms

    Izv. RAN. Ser. Mat., 89:1 (2025),  208–232
  3. On the Phragmen-Lindelöf type theorem for biharmonic functions

    J. Sib. Fed. Univ. Math. Phys., 18:6 (2025),  847–858
  4. Mixed problem for a nonlinear Schrödinger equation of negative order in the class of periodic infinite-gap functions

    Mat. Zametki, 117:5 (2025),  719–735
  5. Integration of a sine-Gordon type equation with an additional term in the class of periodic infinite-gap functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  70–83
  6. The cauchy problem for the nonlinear complex modified Korteweg-de Vries equation with additional terms in the class of periodic infinite-gap functions

    Sibirsk. Mat. Zh., 65:4 (2024),  735–759
  7. On the Hirota equation with a self-consistent source

    TMF, 221:2 (2024),  298–314
  8. Integration of the mKdV Equation with nonstationary coefficients and additional terms in the case of moving eigenvalues

    Izv. IMI UdGU, 61 (2023),  137–155
  9. Integration of the Modified Korteweg–de Vries–Liouville Equation in the Class of Periodic Infinite-Gap Functions

    Mat. Zametki, 114:6 (2023),  894–908
  10. Integrating the modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions

    TMF, 214:2 (2023),  198–210
  11. The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions

    Algebra i Analiz, 34:5 (2022),  139–172
  12. On the integration of the periodic Camassa–Holm equation with a self-consistent source

    J. Sib. Fed. Univ. Math. Phys., 15:6 (2022),  785–796
  13. The Cauchy problem for the defocusing nonlinear Schrödinger equation with a loaded term

    Mat. Tr., 25:1 (2022),  102–133
  14. Integration of the nonlinear Korteweg—de Vries equation with loaded term and source

    Sib. Zh. Ind. Mat., 25:2 (2022),  127–142
  15. Integration of a defocusing nonlinear Schrödinger equation with additional terms

    TMF, 211:1 (2022),  84–104
  16. On integration of the loaded mKdV equation in the class of rapidly decreasing functions

    Bulletin of Irkutsk State University. Series Mathematics, 38 (2021),  19–35
  17. Integration of the general loaded Korteweg–de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 7,  52–66
  18. On the Cauchy problem for the three-dimensional Laplace equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 2,  56–73
  19. The Cauchy problem for the Korteweg–de Vries equation in the class of periodic infinite-gap functions

    Zap. Nauchn. Sem. POMI, 506 (2021),  258–278
  20. Integration of the nonlinear Korteweg–de Vries equation with an additional term

    TMF, 203:2 (2020),  192–204
  21. On families of isospectral Sturm–Liouville boundary value problems

    Ufimsk. Mat. Zh., 12:2 (2020),  28–34
  22. Integration of the nonlinear Schrödinger equation with an additional term in the class of periodic functions

    TMF, 199:1 (2019),  60–68
  23. On Cauchy problem for Laplace equation

    Ufimsk. Mat. Zh., 11:4 (2019),  92–106
  24. On integration of Korteweg–de Vries equation in a class of rapidly decreasing complex-valued functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 3,  79–90
  25. Integration of equation of Toda periodic chain kind

    Ufimsk. Mat. Zh., 9:2 (2017),  17–24
  26. Periodic Toda chain with an integral source

    TMF, 184:2 (2015),  253–268
  27. The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions

    TMF, 164:2 (2010),  214–221
  28. Integration of the sine-Gordon equation with a self-consistent source of the integral type in the case of multiple eigenvalues

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3,  55–66
  29. About the finite density solution of the higher nonlinear Schrodinger equation with self-consistent source

    Ufimsk. Mat. Zh., 1:4 (2009),  133–143
  30. On the sine-Gordon equation with a self-consistent source

    Mat. Tr., 11:1 (2008),  153–166
  31. On the Sine–Gordon equation with a self-consistent source of the integral type

    Zh. Mat. Fiz. Anal. Geom., 2:3 (2006),  287–298
  32. On the Inverse Problem for a Quadratic Pencil of Sturm–Liouville Operators with Periodic Potential

    Differ. Uravn., 41:3 (2005),  298–305
  33. Identities for the Squares of the Components of the Vector Eigenfunctions of the Dirac System of Equations with Periodic Coefficients

    Mat. Zametki, 76:3 (2004),  459–465
  34. The solution of general KdV equation in a class of steplike functions

    Zap. Nauchn. Sem. POMI, 317 (2004),  174–199
  35. Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data

    TMF, 129:1 (2001),  38–54
  36. Almost periodicity of infinite-gap potentials of the Dirac operator

    Dokl. Akad. Nauk, 350:6 (1996),  746–748
  37. Eigenvalues of the Dirac operator in the continuous spectrum

    TMF, 99:1 (1994),  20–26
  38. Estimation of the Cauchy function for finite-zone nonperiodic potentials

    Funktsional. Anal. i Prilozhen., 26:2 (1992),  18–28
  39. The inverse scattering problem for a perturbed finite-gap Sturm–Liouville operator

    Dokl. Akad. Nauk SSSR, 318:5 (1991),  1095–1098
  40. Asymptotic behavior of Weyl–Titchmarsh m-function in the case of the Dirac system

    Mat. Zametki, 50:2 (1991),  67–76
  41. Solvability of the inverse problem for the Dirac system on the whole axis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 6,  3–7
  42. An inverse problem of scattering theory on the half axis for a system of difference equations

    Dokl. Akad. Nauk SSSR, 278:6 (1984),  1316–1319
  43. An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations

    Dokl. Akad. Nauk SSSR, 277:3 (1984),  559–562


© Steklov Math. Inst. of RAS, 2026