RUS  ENG
Full version
PEOPLE

Shtraus Vladimir Abramovich

Publications in Math-Net.Ru

  1. Spectral decomposition of self-adjoint operators in Pontryagin and Krein spaces

    CMFD, 71:3 (2025),  524–546
  2. Models of self-adjoint and unitary operators in Pontryagin spaces

    CMFD, 68:3 (2022),  522–552
  3. On a limit pass from two-point to one-point interaction in a one dimensional quantum mechanical problem giving rise to a spontaneous symmetry breaking

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  75–90
  4. On a model of spontaneous symmetry breaking in quantum mechanics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:3 (2020),  5–16
  5. On the one-dimensional harmonic oscillator with a singular perturbation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016),  73–91
  6. On factorization of a differential operator arising in fluid dynamics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  104–111
  7. Some Sobolev spaces as Pontryagin spaces

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6,  14–23
  8. Operators in Krein Space

    Mat. Zametki, 76:3 (2004),  324–334
  9. On a bicyclic self-adjoint algebra in a Krein space that is non-isomorphic to its own commutator-group

    Uspekhi Mat. Nauk, 43:4(262) (1988),  233–234
  10. On an analogue of the Wold decomposition for $\pi$-semi-unitary operators

    Uspekhi Mat. Nauk, 43:1(259) (1988),  185–186
  11. Functional representation of operators that doubly commute with a selfadjoint operator in a Pontryagin space

    Sibirsk. Mat. Zh., 29:6 (1988),  176–184
  12. Elements of functional calculus for $J$-selfadjoint definitizable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 1,  83–85
  13. Functional representation of the algebra, generated by a self-adjoint operator in a Pontryagin space

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  91–92
  14. Nonatomic problems of location of extended objects

    Avtomat. i Telemekh., 1985, no. 11,  54–61
  15. On the theory of selfadjoint operators in Banach spaces with a Hermitian form

    Sibirsk. Mat. Zh., 19:3 (1978),  685–692
  16. $G$-orthonormal systems and bases in Hilbert space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 9,  108–117
  17. Continuous Hermitian-indefinite functions

    Mat. Zametki, 13:2 (1973),  303–310

  18. Evnin Alexander Yurevich (September 24, 1960 – November 19, 2020)

    J. Comp. Eng. Math., 8:1 (2021),  74–48


© Steklov Math. Inst. of RAS, 2026