RUS  ENG
Full version
PEOPLE

Kurdyumov Vitalii Pavlovich

Publications in Math-Net.Ru

  1. Classic and generalized solutions of the mixed problem for wave equation with a summable potential. Part I. Classic solution of the mixed problem

    Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023),  311–319
  2. Divergent series and the mixed problem for the wave equation with free endpoints

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  65–72
  3. Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential

    Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020),  444–456
  4. A mixed problem for a wave equation with a nonzero initial velocity

    Izv. Saratov Univ. Math. Mech. Inform., 18:2 (2018),  157–171
  5. Justification of Fourier method in a mixed problem for wave equation with non-zero velocity

    Izv. Saratov Univ. Math. Mech. Inform., 16:1 (2016),  13–29
  6. On Riescz bases of eigenfunction of $2$-nd order differential operator with involution and integral boundary conditions

    Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  392–405
  7. Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution

    Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014),  558–569
  8. Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals

    Izv. RAN. Ser. Mat., 76:6 (2012),  107–122
  9. Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  22–30
  10. Approximate solution of an optimal control problem with linear nonhomogeneous control system in Hilbert space

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  3–14
  11. The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  39–52
  12. On Riesz basises of eigenfunctions of integral operators with kernels discontinuous on broken lines

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  28–35
  13. On Riesz basises of the eigen and associated functions of the functional-differential operator with a variable structure

    Izv. Saratov Univ. Math. Mech. Inform., 7:2 (2007),  20–25
  14. Estimates for eigenfunctions and eigenvalues of an integral-differential operator

    Izv. Saratov Univ. Math. Mech. Inform., 6:1-2 (2006),  20–29
  15. Riesz Bases of Eigenfunctions of an Integral Operator with a Variable Limit of Integration

    Mat. Zametki, 76:1 (2004),  97–110
  16. Riesz Bases of Eigenfunctions and Adjoint Eigenfunctions of Some Integral Operators

    Differ. Uravn., 38:4 (2002),  555–564

  17. Fourth International Conference “Mathematics. Computer. Education”

    Uspekhi Mat. Nauk, 52:6(318) (1997),  209–210
  18. Stanislav Ivanovich Pokhozhaev (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 51:2(308) (1996),  183–188


© Steklov Math. Inst. of RAS, 2026