|
|
Publications in Math-Net.Ru
-
Generalized Dunkl transform on the line in inverse problems of approximation theory
Chebyshevskii Sb., 25:2 (2024), 67–81
-
Generalized one-dimensional Dunkl transform in direct problems of approximation theory
Mat. Zametki, 116:2 (2024), 245–260
-
The intertwining operator for the generalized Dunkl transform on the line
Chebyshevskii Sb., 24:4 (2023), 48–62
-
Generalized Hankel transform on the line
Chebyshevskii Sb., 24:3 (2023), 5–25
-
Nondeformed Generalized Dunkl transform on the Line
Mat. Zametki, 114:4 (2023), 509–524
-
Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform
Mat. Zametki, 113:3 (2023), 360–373
-
Logan–Hermite Extremal Problems for Entire Functions of Exponential Type
Mat. Zametki, 113:1 (2023), 138–143
-
One-dimensional $(k,a)$-generalized Fourier transform
Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023), 92–108
-
Generalized extremal Yudin problems for polynomials
Chebyshevskii Sb., 23:4 (2022), 105–114
-
Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights
Chebyshevskii Sb., 23:4 (2022), 92–104
-
About three-dimensional nets of Smolyak III
Chebyshevskii Sb., 23:3 (2022), 249–254
-
Properties and application of a positive translation operator for $(k,1)$-Generalized Fourier transform
Chebyshevskii Sb., 22:4 (2021), 136–152
-
Riesz potential for $(k,1)$-generalized Fourier transform
Chebyshevskii Sb., 22:4 (2021), 114–135
-
Inequalities for Dunkl–Riesz transforms and Dunkl gradient with radial piecewise power weights
Chebyshevskii Sb., 22:3 (2021), 122–132
-
About three-dimensional nets of Smolyak II
Chebyshevskii Sb., 22:3 (2021), 100–121
-
Chebyshev's Problem of the Moments of Nonnegative Polynomials
Mat. Zametki, 110:6 (2021), 875–890
-
Yudin–Hermite Extremal Problems for Polynomials
Mat. Zametki, 110:5 (2021), 789–795
-
Weighted inequalities for Dunkl–Riesz transforms and Dunkl gradient
Chebyshevskii Sb., 21:4 (2020), 97–106
-
Bounded translation operator for the $(k,1)$-generalized Fourier transform
Chebyshevskii Sb., 21:4 (2020), 85–96
-
Extremal Values of Moments of Nonnegative Polynomials
Mat. Zametki, 108:4 (2020), 625–628
-
Chebyshev's problem on extremal values of moments of nonnegative algebraic polynomials
Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020), 138–154
-
About three-dimensional nets of Smolyak I
Chebyshevskii Sb., 20:3 (2019), 193–219
-
Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure
Chebyshevskii Sb., 20:2 (2019), 82–92
-
Weighted inequalities for Dunkl–Riesz potential
Chebyshevskii Sb., 20:1 (2019), 131–147
-
Fractional Smoothness in
$L^p$
with Dunkl Weight
and Its Applications
Mat. Zametki, 106:4 (2019), 537–561
-
A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight
Mat. Zametki, 105:5 (2019), 666–684
-
Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem
Mat. Sb., 210:6 (2019), 56–81
-
Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 75–87
-
On the doubling condition for non-negative positive definite functions on on the half-line with power weight
Chebyshevskii Sb., 19:2 (2018), 90–100
-
The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm–Liouville operator
Chebyshevskii Sb., 19:1 (2018), 57–78
-
Pointwise Turán problem for periodic positive definite functions
Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 156–175
-
Some extremal problems of harmonic analysis and approximation theory
Chebyshevskii Sb., 18:4 (2017), 140–167
-
Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator
Chebyshevskii Sb., 18:2 (2017), 34–53
-
Some Extremal Problems for the Fourier Transform
on the Hyperboloid
Mat. Zametki, 102:4 (2017), 480–491
-
The Delsarte Extremal Problem for the Jacobi Transform
Mat. Zametki, 100:5 (2016), 677–686
-
Approximation in $L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator
Mat. Zametki, 100:4 (2016), 519–530
-
Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 136–152
-
Bohman extremal problem for the Jacobi transform
Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016), 126–135
-
On the Sharpness of Jackson's Inequality in the Spaces $L_p$ on the Half-Line with Power Weight
Mat. Zametki, 98:5 (2015), 684–694
-
Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type
Mat. Sb., 206:8 (2015), 63–98
-
Bohman extremal problem for the Dunkl transform
Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 115–123
-
Optimal argument in the sharp Jackson inequality in the space $L_2$ with hyperbolic weight
Mat. Zametki, 96:5 (2014), 904–913
-
Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight
Mat. Zametki, 96:5 (2014), 674–686
-
Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight
Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 109–118
-
Optimal Arguments in Jackson's Inequality in the Power-Weighted Space $L_2(\mathbb{R}^d)$
Mat. Zametki, 94:3 (2013), 338–348
-
Some Problems of Approximation Theory in the Spaces $L_p$ on the Line with Power Weight
Mat. Zametki, 90:3 (2011), 362–383
-
Jackson's Theorem in the Space $L_2(\mathbb{R}^d)$ with Power Weight
Mat. Zametki, 88:1 (2010), 148–151
-
Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight
Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 180–192
-
Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkins papers and the development of these theorems
Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 5–17
-
Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight
Mat. Zametki, 84:1 (2008), 136–138
-
The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008), 112–126
-
On the Turán and Delsarte problems for periodic positive definite functions
Mat. Zametki, 80:6 (2006), 934–939
-
On the Turan Problem for Periodic Functions with Nonnegative Fourier Coefficients and Small Support
Mat. Zametki, 77:6 (2005), 941–945
-
Some extremal problems for periodic functions with conditions on their values and Fourier coefficients
Trudy Inst. Mat. i Mekh. UrO RAN, 11:2 (2005), 92–111
-
An extremum problem for polynomials related to codes and designs
Mat. Zametki, 67:4 (2000), 508–513
-
Jackson Constants in the Space $l_2(\mathbb Z_2^n)$
Trudy Mat. Inst. Steklova, 219 (1997), 183–210
-
On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$
Mat. Zametki, 60:3 (1996), 390–405
-
On the relation between the Jackson and Jung constants of the spaces $L_ p$
Mat. Zametki, 58:6 (1995), 828–836
-
Approximation of functions in spaces $L_p$
Mat. Zametki, 56:2 (1994), 15–40
-
On the approximation of functions in spaces $L_p$
Mat. Zametki, 54:2 (1993), 151–154
-
On the Jackson theorem in $L_2$ for Preiss systems
Mat. Zametki, 53:3 (1993), 37–50
-
Lower bound on constant in Jackson inequality in different $L_p$-norms
Mat. Zametki, 52:3 (1992), 48–62
-
Jung constants of the $l_p^n$-spaces
Mat. Zametki, 48:4 (1990), 37–47
-
Representation of functions by series in metric symmetric spaces without linear functionals
Trudy Mat. Inst. Steklov., 189 (1989), 34–77
-
Approximation in $L_p$ by means of piecewise-constant functions
Mat. Zametki, 44:1 (1988), 64–79
-
Approximation of functions from $C^r$ by splines of minimal defect
Mat. Zametki, 43:6 (1988), 746–756
-
Approximation of periodic functions in $L_p$ by linear positive methods and multiple moduli of continuity
Mat. Zametki, 42:6 (1987), 776–785
-
The modulus of continuity in $L_p$
Mat. Zametki, 41:5 (1987), 682–686
-
Approximation in $L_p$ by polynomials in the Walsh system
Mat. Sb. (N.S.), 134(176):3(11) (1987), 386–403
-
Representation of functions by Bochner–Riesz spherical means in the spaces $\varphi(L)$
Trudy Mat. Inst. Steklov., 180 (1987), 121–122
-
Representation of functions by series in metric symmetric spaces
without linear functionals
Dokl. Akad. Nauk SSSR, 289:3 (1986), 532–535
-
Coefficients of universal and null orthogonal series
Dokl. Akad. Nauk SSSR, 272:1 (1983), 19–23
-
Representation of measurable functions by multiple trigonometric series
Trudy Mat. Inst. Steklov., 164 (1983), 100–123
-
Representation of measurable functions by multiple trigonometric series
Dokl. Akad. Nauk SSSR, 259:2 (1981), 279–282
-
Trigonometric system in $L_p$, $0<p<1$
Mat. Zametki, 28:6 (1980), 859–868
-
Some extremal properties of polynomials and inverse inequalities of approximation theory
Trudy Mat. Inst. Steklov., 145 (1980), 79–110
-
On one-sided approximations of functions in the $L_p$-metrics
Dokl. Akad. Nauk SSSR, 232:4 (1977), 760–762
-
Local approximation of periodic functions by linear polynomial methods
Dokl. Akad. Nauk SSSR, 224:3 (1975), 523–524
-
Direct and converse theorems of the theory of approximation in the metric of $L_p$ for $0<p<1$
Mat. Zametki, 18:5 (1975), 641–658
-
Certain inequalities in various metrics for trigonometric polynomials and their derivatives
Mat. Zametki, 18:4 (1975), 489–498
-
International Conference “Approximation Theory and Harmonic Analysis”
Uspekhi Mat. Nauk, 54:2(326) (1999), 205–207
© , 2026