RUS  ENG
Full version
PEOPLE

Ivanov Valerii Ivanovich

Publications in Math-Net.Ru

  1. Generalized Dunkl transform on the line in inverse problems of approximation theory

    Chebyshevskii Sb., 25:2 (2024),  67–81
  2. Generalized one-dimensional Dunkl transform in direct problems of approximation theory

    Mat. Zametki, 116:2 (2024),  245–260
  3. The intertwining operator for the generalized Dunkl transform on the line

    Chebyshevskii Sb., 24:4 (2023),  48–62
  4. Generalized Hankel transform on the line

    Chebyshevskii Sb., 24:3 (2023),  5–25
  5. Nondeformed Generalized Dunkl transform on the Line

    Mat. Zametki, 114:4 (2023),  509–524
  6. Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform

    Mat. Zametki, 113:3 (2023),  360–373
  7. Logan–Hermite Extremal Problems for Entire Functions of Exponential Type

    Mat. Zametki, 113:1 (2023),  138–143
  8. One-dimensional $(k,a)$-generalized Fourier transform

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  92–108
  9. Generalized extremal Yudin problems for polynomials

    Chebyshevskii Sb., 23:4 (2022),  105–114
  10. Lebesgue boundedness of Riesz potential for $(k,1)$-generalized Fourier transform with radial piecewise power weights

    Chebyshevskii Sb., 23:4 (2022),  92–104
  11. About three-dimensional nets of Smolyak III

    Chebyshevskii Sb., 23:3 (2022),  249–254
  12. Properties and application of a positive translation operator for $(k,1)$-Generalized Fourier transform

    Chebyshevskii Sb., 22:4 (2021),  136–152
  13. Riesz potential for $(k,1)$-generalized Fourier transform

    Chebyshevskii Sb., 22:4 (2021),  114–135
  14. Inequalities for Dunkl–Riesz transforms and Dunkl gradient with radial piecewise power weights

    Chebyshevskii Sb., 22:3 (2021),  122–132
  15. About three-dimensional nets of Smolyak II

    Chebyshevskii Sb., 22:3 (2021),  100–121
  16. Chebyshev's Problem of the Moments of Nonnegative Polynomials

    Mat. Zametki, 110:6 (2021),  875–890
  17. Yudin–Hermite Extremal Problems for Polynomials

    Mat. Zametki, 110:5 (2021),  789–795
  18. Weighted inequalities for Dunkl–Riesz transforms and Dunkl gradient

    Chebyshevskii Sb., 21:4 (2020),  97–106
  19. Bounded translation operator for the $(k,1)$-generalized Fourier transform

    Chebyshevskii Sb., 21:4 (2020),  85–96
  20. Extremal Values of Moments of Nonnegative Polynomials

    Mat. Zametki, 108:4 (2020),  625–628
  21. Chebyshev's problem on extremal values of moments of nonnegative algebraic polynomials

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  138–154
  22. About three-dimensional nets of Smolyak I

    Chebyshevskii Sb., 20:3 (2019),  193–219
  23. Muckenhoupt conditions for piecewise-power weights in Euclidean space with Dunkl measure

    Chebyshevskii Sb., 20:2 (2019),  82–92
  24. Weighted inequalities for Dunkl–Riesz potential

    Chebyshevskii Sb., 20:1 (2019),  131–147
  25. Fractional Smoothness in $L^p$ with Dunkl Weight and Its Applications

    Mat. Zametki, 106:4 (2019),  537–561
  26. A Sharp Jackson Inequality in $L_p(\mathbb R^d)$ with Dunkl Weight

    Mat. Zametki, 105:5 (2019),  666–684
  27. Turán, Fejér and Bohman extremal problems for the multivariate Fourier transform in terms of the eigenfunctions of a Sturm-Liouville problem

    Mat. Sb., 210:6 (2019),  56–81
  28. Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  75–87
  29. On the doubling condition for non-negative positive definite functions on on the half-line with power weight

    Chebyshevskii Sb., 19:2 (2018),  90–100
  30. The second Logan extremal problem for the fourier transform over the eigenfunctions of the Sturm–Liouville operator

    Chebyshevskii Sb., 19:1 (2018),  57–78
  31. Pointwise Turán problem for periodic positive definite functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  156–175
  32. Some extremal problems of harmonic analysis and approximation theory

    Chebyshevskii Sb., 18:4 (2017),  140–167
  33. Some extremal problems for the Fourier transform over the eigenfunctions of the Sturm–Liouville operator

    Chebyshevskii Sb., 18:2 (2017),  34–53
  34. Some Extremal Problems for the Fourier Transform on the Hyperboloid

    Mat. Zametki, 102:4 (2017),  480–491
  35. The Delsarte Extremal Problem for the Jacobi Transform

    Mat. Zametki, 100:5 (2016),  677–686
  36. Approximation in $L_2$ by Partial Integrals of the Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator

    Mat. Zametki, 100:4 (2016),  519–530
  37. Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  136–152
  38. Bohman extremal problem for the Jacobi transform

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  126–135
  39. On the Sharpness of Jackson's Inequality in the Spaces $L_p$ on the Half-Line with Power Weight

    Mat. Zametki, 98:5 (2015),  684–694
  40. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type

    Mat. Sb., 206:8 (2015),  63–98
  41. Bohman extremal problem for the Dunkl transform

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  115–123
  42. Optimal argument in the sharp Jackson inequality in the space $L_2$ with hyperbolic weight

    Mat. Zametki, 96:5 (2014),  904–913
  43. Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight

    Mat. Zametki, 96:5 (2014),  674–686
  44. Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  109–118
  45. Optimal Arguments in Jackson's Inequality in the Power-Weighted Space $L_2(\mathbb{R}^d)$

    Mat. Zametki, 94:3 (2013),  338–348
  46. Some Problems of Approximation Theory in the Spaces $L_p$ on the Line with Power Weight

    Mat. Zametki, 90:3 (2011),  362–383
  47. Jackson's Theorem in the Space $L_2(\mathbb{R}^d)$ with Power Weight

    Mat. Zametki, 88:1 (2010),  148–151
  48. Dunkl theory and Jackson inequality in $L_2(\mathbb R^d)$ with power weight

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  180–192
  49. Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkins papers and the development of these theorems

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  5–17
  50. Jackson Theorem in the Space $L_2$ on the Interval $[-1,1]$ with Power-Law Weight

    Mat. Zametki, 84:1 (2008),  136–138
  51. The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  112–126
  52. On the Turán and Delsarte problems for periodic positive definite functions

    Mat. Zametki, 80:6 (2006),  934–939
  53. On the Turan Problem for Periodic Functions with Nonnegative Fourier Coefficients and Small Support

    Mat. Zametki, 77:6 (2005),  941–945
  54. Some extremal problems for periodic functions with conditions on their values and Fourier coefficients

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:2 (2005),  92–111
  55. An extremum problem for polynomials related to codes and designs

    Mat. Zametki, 67:4 (2000),  508–513
  56. Jackson Constants in the Space $l_2(\mathbb Z_2^n)$

    Trudy Mat. Inst. Steklova, 219 (1997),  183–210
  57. On Jackson's theorem in the space $\ell_2(\mathbb Z_2^n)$

    Mat. Zametki, 60:3 (1996),  390–405
  58. On the relation between the Jackson and Jung constants of the spaces $L_ p$

    Mat. Zametki, 58:6 (1995),  828–836
  59. Approximation of functions in spaces $L_p$

    Mat. Zametki, 56:2 (1994),  15–40
  60. On the approximation of functions in spaces $L_p$

    Mat. Zametki, 54:2 (1993),  151–154
  61. On the Jackson theorem in $L_2$ for Preiss systems

    Mat. Zametki, 53:3 (1993),  37–50
  62. Lower bound on constant in Jackson inequality in different $L_p$-norms

    Mat. Zametki, 52:3 (1992),  48–62
  63. Jung constants of the $l_p^n$-spaces

    Mat. Zametki, 48:4 (1990),  37–47
  64. Representation of functions by series in metric symmetric spaces without linear functionals

    Trudy Mat. Inst. Steklov., 189 (1989),  34–77
  65. Approximation in $L_p$ by means of piecewise-constant functions

    Mat. Zametki, 44:1 (1988),  64–79
  66. Approximation of functions from $C^r$ by splines of minimal defect

    Mat. Zametki, 43:6 (1988),  746–756
  67. Approximation of periodic functions in $L_p$ by linear positive methods and multiple moduli of continuity

    Mat. Zametki, 42:6 (1987),  776–785
  68. The modulus of continuity in $L_p$

    Mat. Zametki, 41:5 (1987),  682–686
  69. Approximation in $L_p$ by polynomials in the Walsh system

    Mat. Sb. (N.S.), 134(176):3(11) (1987),  386–403
  70. Representation of functions by Bochner–Riesz spherical means in the spaces $\varphi(L)$

    Trudy Mat. Inst. Steklov., 180 (1987),  121–122
  71. Representation of functions by series in metric symmetric spaces without linear functionals

    Dokl. Akad. Nauk SSSR, 289:3 (1986),  532–535
  72. Coefficients of universal and null orthogonal series

    Dokl. Akad. Nauk SSSR, 272:1 (1983),  19–23
  73. Representation of measurable functions by multiple trigonometric series

    Trudy Mat. Inst. Steklov., 164 (1983),  100–123
  74. Representation of measurable functions by multiple trigonometric series

    Dokl. Akad. Nauk SSSR, 259:2 (1981),  279–282
  75. Trigonometric system in $L_p$, $0<p<1$

    Mat. Zametki, 28:6 (1980),  859–868
  76. Some extremal properties of polynomials and inverse inequalities of approximation theory

    Trudy Mat. Inst. Steklov., 145 (1980),  79–110
  77. On one-sided approximations of functions in the $L_p$-metrics

    Dokl. Akad. Nauk SSSR, 232:4 (1977),  760–762
  78. Local approximation of periodic functions by linear polynomial methods

    Dokl. Akad. Nauk SSSR, 224:3 (1975),  523–524
  79. Direct and converse theorems of the theory of approximation in the metric of $L_p$ for $0<p<1$

    Mat. Zametki, 18:5 (1975),  641–658
  80. Certain inequalities in various metrics for trigonometric polynomials and their derivatives

    Mat. Zametki, 18:4 (1975),  489–498

  81. International Conference “Approximation Theory and Harmonic Analysis”

    Uspekhi Mat. Nauk, 54:2(326) (1999),  205–207


© Steklov Math. Inst. of RAS, 2026