RUS  ENG
Full version
PEOPLE

Chilin Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Equivalence of paths in galileean-symplectic geometry

    Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 1,  82–93
  2. Linear Isometries of Banach-Kantorovich $L_p$-spaces

    Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1,  7–18
  3. Positive isometries of Orlicz–Kantorovich spaces

    Vladikavkaz. Mat. Zh., 25:2 (2023),  103–116
  4. Statistical ergodic theorem in symmetric spaces for infinite measures

    CMFD, 67:4 (2021),  654–667
  5. Weak continuity of skew-Hermitian operators in Banach ideals

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197 (2021),  3–11
  6. Ergodic theorems in Banach ideals of compact operators

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  534–547
  7. Isometries of spaces of $LOG$-integrable functions

    Sib. Èlektron. Mat. Izv., 17 (2020),  218–226
  8. Ergodic theorems for flows in the ideals of compact operators

    Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 4,  7–17
  9. The cyclical compactness in Banach $C_{\infty}(Q)$-modules

    CMFD, 65:1 (2019),  137–155
  10. Basis of trancendense in differential field of invariants of pseugo-Galilean group

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3,  19–31
  11. Isometries of real subspaces of self-adjoint operators in banach symmetric ideals

    Vladikavkaz. Mat. Zh., 21:4 (2019),  11–24
  12. $2$-Local isometries of non-commutative Lorentz spaces

    Vladikavkaz. Mat. Zh., 21:4 (2019),  5–10
  13. Equivalence of Paths in Galilean Geometry

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018),  3–16
  14. Derivations on Banach $*$-ideals in von Neumann algebras

    Vladikavkaz. Mat. Zh., 20:2 (2018),  23–28
  15. The uniqueness of the symmetric structure in ideals of compact operators

    Vladikavkaz. Mat. Zh., 20:1 (2018),  30–37
  16. Derivations with values in an ideal $F$-spaces of measurable functions

    Vladikavkaz. Mat. Zh., 20:1 (2018),  21–29
  17. Isometries and Hermitian operators on complex symmetric sequence spaces

    Mat. Tr., 20:1 (2017),  21–42
  18. Embedding of symmetric functional spaces

    Acta NUUz. Exact Sciences, 2017, no. 1,  54–59
  19. The classification of paths in the Galilean geometry

    Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 1,  95–111
  20. Blum–Hanson ergodic theorem in a Banach lattices of sequences

    Vladikavkaz. Mat. Zh., 19:3 (2017),  3–10
  21. Topological algebras of measurable and locally measurable operators

    CMFD, 61 (2016),  115–163
  22. Lattice normed lattices with monotonically complete and order semicontinuous norm

    Dal'nevost. Mat. Zh., 14:2 (2014),  280–296
  23. Derivations with values in quasi-normed bimodules of locally measurable operators

    Mat. Tr., 17:1 (2014),  3–18
  24. Laterally complete $C_\infty(Q)$-modules

    Vladikavkaz. Mat. Zh., 16:2 (2014),  69–78
  25. Derivations on ideals in commutative $AW^*$-algebras

    Mat. Tr., 16:1 (2013),  63–88
  26. Noncommutative integration for traces with values in Kantorovich–Pinsker spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10,  18–30
  27. Ergodic theorems for contractions in Orlicz–Kantorovich lattices

    Sibirsk. Mat. Zh., 50:6 (2009),  1305–1318
  28. The Gel'fand-Naĭmark theorem for $C^*$-algebras over a ring of measurable functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2,  60–68
  29. Decomposable measures with values in order-complete vector lattices

    Vladikavkaz. Mat. Zh., 10:4 (2008),  31–38
  30. GNS-representations of $C^*$-algebras over the ring of measurable function

    Vladikavkaz. Mat. Zh., 9:2 (2007),  33–39
  31. A Banach Principle for Semifinite von Neumann Algebras

    SIGMA, 2 (2006), 023, 9 pp.
  32. $*$-algebras of unbounded operators affiliated with a von Neumann algebra

    Zap. Nauchn. Sem. POMI, 326 (2005),  183–197
  33. Derivations in Commutative Regular Algebras

    Mat. Zametki, 75:3 (2004),  453–454
  34. Measurable bundles of $C^*$-algebras

    Vladikavkaz. Mat. Zh., 5:1 (2003),  35–38
  35. Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a Center-valued Trace

    Mat. Tr., 4:2 (2001),  27–41
  36. An individual ergodic theorem for contractions in the Banach–Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7,  81–83
  37. Uniform convexity and local uniform convexity of symmetric spaces of measurable operators

    Dokl. Akad. Nauk SSSR, 317:3 (1991),  555–558
  38. Abstract characterization of $EW^*$-algebras

    Funktsional. Anal. i Prilozhen., 25:1 (1991),  76–78
  39. Symmetric spaces over semifinite von Neumann algebras

    Dokl. Akad. Nauk SSSR, 313:4 (1990),  811–815
  40. Convergence in measure in regular noncommutative symmetric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 9,  63–70
  41. Description of closed convex symmetric sets of measurable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  31–37
  42. Ordered $\ast$-algebroids

    Dokl. Akad. Nauk SSSR, 281:5 (1985),  1063–1067
  43. Partially ordered Baer involutive algebras

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 27 (1985),  99–128
  44. Monotone completeness of semifinite $AW^{\ast}$-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 8,  71–72
  45. Baer ordered $*$-algebras

    Dokl. Akad. Nauk SSSR, 258:5 (1981),  1065–1069
  46. Topological $O^*$-algebras

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  87–88
  47. Uniformities and outer valuations on logics

    Dokl. Akad. Nauk SSSR, 230:6 (1976),  1282–1285
  48. Measures with values in semifields and their applications in probability theory

    Dokl. Akad. Nauk SSSR, 228:1 (1976),  41–44
  49. Measures on topological Boolean algebras

    Dokl. Akad. Nauk SSSR, 218:1 (1974),  42–45
  50. Complete tensor products of topological semifields

    Dokl. Akad. Nauk SSSR, 216:6 (1974),  1226–1228

  51. To the memory of Inomjon Gulomjonovich Ganiev

    Vladikavkaz. Mat. Zh., 20:1 (2018),  98–102


© Steklov Math. Inst. of RAS, 2026