|
|
Publications in Math-Net.Ru
-
Equivalence of paths in galileean-symplectic geometry
Taurida Journal of Computer Science Theory and Mathematics, 2024, no. 1, 82–93
-
Linear Isometries of Banach-Kantorovich $L_p$-spaces
Taurida Journal of Computer Science Theory and Mathematics, 2023, no. 1, 7–18
-
Positive isometries of Orlicz–Kantorovich spaces
Vladikavkaz. Mat. Zh., 25:2 (2023), 103–116
-
Statistical ergodic theorem in symmetric spaces for infinite measures
CMFD, 67:4 (2021), 654–667
-
Weak continuity of skew-Hermitian operators in Banach ideals
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197 (2021), 3–11
-
Ergodic theorems in Banach ideals of compact operators
Sib. Èlektron. Mat. Izv., 18:1 (2021), 534–547
-
Isometries of spaces of $LOG$-integrable functions
Sib. Èlektron. Mat. Izv., 17 (2020), 218–226
-
Ergodic theorems for flows in the ideals of compact operators
Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 4, 7–17
-
The cyclical compactness in Banach $C_{\infty}(Q)$-modules
CMFD, 65:1 (2019), 137–155
-
Basis of trancendense in differential field of invariants of pseugo-Galilean group
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 19–31
-
Isometries of real subspaces of self-adjoint operators in banach symmetric ideals
Vladikavkaz. Mat. Zh., 21:4 (2019), 11–24
-
$2$-Local isometries of non-commutative Lorentz spaces
Vladikavkaz. Mat. Zh., 21:4 (2019), 5–10
-
Equivalence of Paths in Galilean Geometry
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 144 (2018), 3–16
-
Derivations on Banach $*$-ideals in von Neumann algebras
Vladikavkaz. Mat. Zh., 20:2 (2018), 23–28
-
The uniqueness of the symmetric structure in ideals of compact operators
Vladikavkaz. Mat. Zh., 20:1 (2018), 30–37
-
Derivations with values in an ideal $F$-spaces of measurable functions
Vladikavkaz. Mat. Zh., 20:1 (2018), 21–29
-
Isometries and Hermitian operators on complex symmetric sequence spaces
Mat. Tr., 20:1 (2017), 21–42
-
Embedding of symmetric functional spaces
Acta NUUz. Exact Sciences, 2017, no. 1, 54–59
-
The classification of paths in the Galilean geometry
Taurida Journal of Computer Science Theory and Mathematics, 2017, no. 1, 95–111
-
Blum–Hanson ergodic theorem in a Banach lattices of sequences
Vladikavkaz. Mat. Zh., 19:3 (2017), 3–10
-
Topological algebras of measurable and locally measurable operators
CMFD, 61 (2016), 115–163
-
Lattice normed lattices
with monotonically complete and order semicontinuous norm
Dal'nevost. Mat. Zh., 14:2 (2014), 280–296
-
Derivations with values in quasi-normed bimodules of locally measurable operators
Mat. Tr., 17:1 (2014), 3–18
-
Laterally complete $C_\infty(Q)$-modules
Vladikavkaz. Mat. Zh., 16:2 (2014), 69–78
-
Derivations on ideals in commutative $AW^*$-algebras
Mat. Tr., 16:1 (2013), 63–88
-
Noncommutative integration for traces with values in Kantorovich–Pinsker spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10, 18–30
-
Ergodic theorems for contractions in Orlicz–Kantorovich lattices
Sibirsk. Mat. Zh., 50:6 (2009), 1305–1318
-
The Gel'fand-Naĭmark theorem for $C^*$-algebras over a ring of measurable functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2, 60–68
-
Decomposable measures with values in order-complete vector lattices
Vladikavkaz. Mat. Zh., 10:4 (2008), 31–38
-
GNS-representations of $C^*$-algebras over the ring of measurable function
Vladikavkaz. Mat. Zh., 9:2 (2007), 33–39
-
A Banach Principle for Semifinite von Neumann Algebras
SIGMA, 2 (2006), 023, 9 pp.
-
$*$-algebras of unbounded operators affiliated with a von Neumann algebra
Zap. Nauchn. Sem. POMI, 326 (2005), 183–197
-
Derivations in Commutative Regular Algebras
Mat. Zametki, 75:3 (2004), 453–454
-
Measurable bundles of $C^*$-algebras
Vladikavkaz. Mat. Zh., 5:1 (2003), 35–38
-
Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a Center-valued Trace
Mat. Tr., 4:2 (2001), 27–41
-
An individual ergodic theorem for contractions in the Banach–Kantorovich lattice $L_p(\widehat\nabla,\widehat\mu)$
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 7, 81–83
-
Uniform convexity and local uniform convexity of symmetric spaces
of measurable operators
Dokl. Akad. Nauk SSSR, 317:3 (1991), 555–558
-
Abstract characterization of $EW^*$-algebras
Funktsional. Anal. i Prilozhen., 25:1 (1991), 76–78
-
Symmetric spaces over semifinite von Neumann algebras
Dokl. Akad. Nauk SSSR, 313:4 (1990), 811–815
-
Convergence in measure in regular noncommutative symmetric spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 9, 63–70
-
Description of closed convex symmetric sets of measurable operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10, 31–37
-
Ordered $\ast$-algebroids
Dokl. Akad. Nauk SSSR, 281:5 (1985), 1063–1067
-
Partially ordered Baer involutive algebras
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 27 (1985), 99–128
-
Monotone completeness of semifinite $AW^{\ast}$-algebras
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 8, 71–72
-
Baer ordered $*$-algebras
Dokl. Akad. Nauk SSSR, 258:5 (1981), 1065–1069
-
Topological $O^*$-algebras
Funktsional. Anal. i Prilozhen., 14:1 (1980), 87–88
-
Uniformities and outer valuations on logics
Dokl. Akad. Nauk SSSR, 230:6 (1976), 1282–1285
-
Measures with values in semifields and their applications in probability theory
Dokl. Akad. Nauk SSSR, 228:1 (1976), 41–44
-
Measures on topological Boolean algebras
Dokl. Akad. Nauk SSSR, 218:1 (1974), 42–45
-
Complete tensor products of topological semifields
Dokl. Akad. Nauk SSSR, 216:6 (1974), 1226–1228
-
To the memory of Inomjon Gulomjonovich Ganiev
Vladikavkaz. Mat. Zh., 20:1 (2018), 98–102
© , 2026