RUS  ENG
Full version
PEOPLE

Burichenko Vladimir Petrovich

Publications in Math-Net.Ru

  1. On the automorphism group of a possible short algorithm for multiplying $3\times 3$ matrices

    Mat. Zametki, 119:2 (2026),  168–180
  2. Truncated matrices of size $4\times 2n$, and applications to fast matrix multiplication

    Diskr. Mat., 37:3 (2025),  6–49
  3. On bilinear complexity of multiplcation of a $3\times 2$ matrix by a $2\times 3$ matrix

    Diskr. Mat., 36:1 (2024),  15–45
  4. Non-existence of a short algorithm for multiplication of $3\times 3$ matrices whose group is $S_4\times S_3$, II

    Tr. Inst. Mat., 31:1 (2023),  101–111
  5. Non-existence of a short algorithm for multiplication of $3\times3$ matrices with group $S_4\times S_3$

    Tr. Inst. Mat., 30:1-2 (2022),  99–116
  6. The isotropy group of the matrix multiplication tensor

    Tr. Inst. Mat., 24:2 (2016),  106–118
  7. Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups

    Mat. Tr., 17:1 (2014),  19–69
  8. On the space $\operatorname{Ext}$ for the group $SL(2,q)$

    Mat. Tr., 16:1 (2013),  28–55
  9. Some finiteness questions about formations

    Tr. Inst. Mat., 21:1 (2013),  15–24
  10. On Groups Whose Small-Order Elements Generate a Small Subgroup

    Mat. Zametki, 92:3 (2012),  361–367
  11. 2-Cohomologies of the groups $SL(n,q)$

    Algebra Logika, 47:6 (2008),  687–704
  12. Formations generated by a group of socle length 2

    Sibirsk. Mat. Zh., 49:6 (2008),  1238–1249
  13. The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module

    Mat. Sb., 198:9 (2007),  29–42
  14. Extensions of abelian 2-groups by means of $L_2(q)$ with irreducible action

    Algebra Logika, 39:3 (2000),  280–319
  15. Invariant lattices in the Steinberg module and their isometry groups

    Mat. Sb., 184:12 (1993),  145–156
  16. On a special loop, the discon form, and the lattice connected with $O_7(3)$

    Mat. Sb., 182:10 (1991),  1408–1429
  17. Transitive orthogonal decompositions of simple complex Lie algebras of type $F_4$ and $E_6$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 4,  78–80


© Steklov Math. Inst. of RAS, 2026