RUS  ENG
Full version
PEOPLE

Stepanov Sergey Evgenevich

Publications in Math-Net.Ru

  1. Differential equations and their general solutions, as well as nonexistence theorems for six invariant classes of the vacuum constraint equations

    TMF, 225:1 (2025),  159–176
  2. A contribution of the generalized Bochner technique to the geometry of complete minimal submanifolds

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 236 (2024),  22–30
  3. Lichnerowicz Laplacian from the Viewpoint of Bochner Technique

    Mat. Zametki, 115:4 (2024),  483–490
  4. Generalized Bochner technique and its application to the study of projective and conformal mappings

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 223 (2023),  112–122
  5. Codazzi and Killing Tensors on a Complete Riemannian Manifold

    Mat. Zametki, 109:6 (2021),  901–911
  6. On symmetric Killing tensors and Codazzi tensors of ranks $p\geq 2$

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 179 (2020),  94–120
  7. From harmonic mappings to Ricci flows due to the Bochner technique

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 169 (2019),  75–87
  8. On the Lichnerovicz Laplacian

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 169 (2019),  67–74
  9. On Geometric Analysis of the Dynamics of Volumetric Expansion and Its Applications to General Relativity

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 146 (2018),  103–112
  10. Metric Affine Spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 146 (2018),  89–102
  11. Harmonic and conformally Killing forms on complete Riemannian manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3,  51–57
  12. Harmonic Transforms of Complete Riemannian Manifolds

    Mat. Zametki, 100:3 (2016),  441–449
  13. Liouville-type theorems for the theories of Riemannian almost product structures and submersions

    Sib. J. Pure and Appl. Math., 16:4 (2016),  3–12
  14. Conformal Killing forms on totally umbilical submanifolds

    Contemporary Mathematics and Its Applications, 96 (2015),  3–17
  15. The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign

    Izv. RAN. Ser. Mat., 79:2 (2015),  167–180
  16. Theorems of Liuville types in theory mappings of the complete Riemannian manifolds

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:3 (2015),  3–10
  17. Theorems of existence and non-existence of conformal Killing forms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 10,  54–61
  18. Betti and Tachibana Numbers

    Mat. Zametki, 95:6 (2014),  926–936
  19. Tachibana operator

    University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4,  82–92
  20. The Berger–Ebin theorem and harmonic maps and flows

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 4,  84–89
  21. Three classes of Weitzenböck manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1,  92–95
  22. New Characteristics of Infinitesimal Isometry and Ricci Solitons

    Mat. Zametki, 92:3 (2012),  459–462
  23. Curvature and Tachibana numbers

    Mat. Sb., 202:7 (2011),  135–146
  24. Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  97–101
  25. Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann–Cartan Manifold

    Mat. Zametki, 87:2 (2010),  267–279
  26. Curvature and Tachibana numbers

    Fundam. Prikl. Mat., 15:6 (2009),  211–222
  27. A Note on Ricci Solitons

    Mat. Zametki, 86:3 (2009),  474–477
  28. Infinitesimal Harmonic Transformations and Ricci Solitons

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009),  150–159
  29. Conjugate connections on statistical manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 10,  90–98
  30. Equiaffine mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 8,  27–34
  31. On the classification of equivolume mappings of pseudo-Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 8,  19–28
  32. Some conformal and projective scalar invariants of Riemannian manifolds

    Mat. Zametki, 80:6 (2006),  902–907
  33. Vanishing theorems in affine, Riemannian, and Lorenz geometries

    Fundam. Prikl. Mat., 11:1 (2005),  35–84
  34. Garmonic diffeomorphisms of manifolds

    Algebra i Analiz, 16:2 (2004),  154–171
  35. Affine differential geometry of Killing tensors

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 11,  82–86
  36. Infinitesimal harmonic transformations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 5,  69–75
  37. A New Strong Laplacian on Differential Forms

    Mat. Zametki, 76:3 (2004),  452–458
  38. On the holomorphic mapping of an almost semi-Kähler manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11,  67–69
  39. The seven classes of harmonic diffeomorphisms and their geometry

    Tr. Geom. Semin., 24 (2003),  139–154
  40. Seven Classes of Harmonic Diffeomorphisms

    Mat. Zametki, 74:5 (2003),  752–761
  41. The Killing–Yano Tensor

    TMF, 134:3 (2003),  382–387
  42. On an application of the Stokes' theorem in global Riemannian geometry

    Fundam. Prikl. Mat., 8:1 (2002),  245–262
  43. Fundamental first-order differential operators on exterior and symmetric forms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 11,  55–60
  44. An analytic method in general relativity

    TMF, 122:3 (2000),  482–496
  45. On the geometry of projective submersions of Riemannian manifolds

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 9,  48–54
  46. On the classification of almost product structures on a manifold with linear connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 1,  61–68
  47. The vector space of the conformal Killing forms on a Riemannian manifold

    Zap. Nauchn. Sem. POMI, 261 (1999),  240–265
  48. Bochner's technique for an $m$-dimensional compact manifold with an $\operatorname{SL}(m,R)$-structure

    Algebra i Analiz, 10:4 (1998),  192–209
  49. On group-theoretic approach to study Einstein's and Maxwell's equations

    TMF, 111:1 (1997),  32–43
  50. An application of P. A. Shirokov's theorem to the Bochner technique

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  53–59
  51. $O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of Riemannian manifolds

    Algebra i Analiz, 7:6 (1995),  188–204
  52. On the global theory of projective mappings

    Mat. Zametki, 58:1 (1995),  111–118
  53. On the theory of mappings of Riemannian manifolds in the large

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 10,  81–88
  54. An integral formula for a compact manifold with a Riemannian almost-product structure

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 7,  69–73
  55. A vector field on a Lorentz manifold

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 3,  81–83
  56. Weyl submersions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 5,  93–95
  57. Fields of symmetric tensors on a compact Riemannian manifold

    Mat. Zametki, 52:4 (1992),  85–88
  58. Bochner's technique in the theory of Riemannian almost product structures

    Mat. Zametki, 48:2 (1990),  93–98
  59. A class of Riemannian almost-product structures

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  40–46
  60. Spherical distribution in Euclidean space

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 9,  76–78
  61. On the theory of multidimensional nets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 12,  51–54
  62. Classification of rigged hypersurfaces by nets

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10,  74–76


© Steklov Math. Inst. of RAS, 2026